Marie-Laure Michel
Institut national de la recherche agronomique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marie-Laure Michel.
Journal of Experimental Medicine | 2007
Marie-Laure Michel; Alexandre Castro Keller; Christophe Paget; Masakazu Fujio; François Trottein; Paul B. Savage; Chi-Huey Wong; Elke Schneider; Michel Dy; Maria C. Leite-de-Moraes
Invariant natural killer T (iNKT) cells are an important source of both T helper type 1 (Th1) and Th2 cytokines, through which they can exert beneficial, as well as deleterious, effects in a variety of inflammatory diseases. This functional heterogeneity raises the question of how far phenotypically distinct subpopulations are responsible for such contrasting activities. In this study, we identify a particular set of iNKT cells that lack the NK1.1 marker (NK1.1neg) and secrete high amounts of interleukin (IL)-17 and low levels of interferon (IFN)-γ and IL-4. NK1.1neg iNKT cells produce IL-17 upon synthetic (α-galactosylceramide [α-GalCer] or PBS-57), as well as natural (lipopolysaccharides or glycolipids derived from Sphingomonas wittichii and Borrelia burgdorferi), ligand stimulation. NK1.1neg iNKT cells are more frequent in the lung, which is consistent with a role in the natural immunity to inhaled antigens. Indeed, airway neutrophilia induced by α-GalCer or lipopolysaccharide instillation was significantly reduced in iNKT-cell–deficient Jα18−/− mice, which produced significantly less IL-17 in their bronchoalveolar lavage fluid than wild-type controls. Furthermore, airway neutrophilia was abolished by a single treatment with neutralizing monoclonal antibody against IL-17 before α-GalCer administration. Collectively, our findings reveal that NK1.1neg iNKT lymphocytes represent a new population of IL-17–producing cells that can contribute to neutrophil recruitment through preferential IL-17 secretion.
Nature Medicine | 2016
Bruno Lamas; Mathias L. Richard; Valentin Leducq; Hang-Phuong Pham; Marie-Laure Michel; Gregory Da Costa; Chantal Bridonneau; Sarah Jegou; Thomas W. Hoffmann; Jane M. Natividad; Loic Brot; Soraya Taleb; Aurélie Couturier-Maillard; Isabelle Nion-Larmurier; Fatiha Merabtene; Philippe Seksik; Anne Bourrier; Jacques Cosnes; Bernhard Ryffel; Laurent Beaugerie; Jean-Marie Launay; Philippe Langella; Ramnik J. Xavier; Harry Sokol
Complex interactions between the host and the gut microbiota govern intestinal homeostasis but remain poorly understood. Here we reveal a relationship between gut microbiota and caspase recruitment domain family member 9 (CARD9), a susceptibility gene for inflammatory bowel disease (IBD) that functions in the immune response against microorganisms. CARD9 promotes recovery from colitis by promoting interleukin (IL)-22 production, and Card9−/− mice are more susceptible to colitis. The microbiota is altered in Card9−/− mice, and transfer of the microbiota from Card9−/− to wild-type, germ-free recipients increases their susceptibility to colitis. The microbiota from Card9−/− mice fails to metabolize tryptophan into metabolites that act as aryl hydrocarbon receptor (AHR) ligands. Intestinal inflammation is attenuated after inoculation of mice with three Lactobacillus strains capable of metabolizing tryptophan or by treatment with an AHR agonist. Reduced production of AHR ligands is also observed in the microbiota from individuals with IBD, particularly in those with CARD9 risk alleles associated with IBD. Our findings reveal that host genes affect the composition and function of the gut microbiota, altering the production of microbial metabolites and intestinal inflammation.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Marie-Laure Michel; Daniella Mendes-da-Cruz; Alexandre Castro Keller; Matthias Lochner; Elke Schneider; Michel Dy; Gérard Eberl; Maria C. Leite-de-Moraes
Invariant natural killer T (iNKT) cells constitute a subpopulation of T cells that recognize glycolipids presented by CD1d molecules. They are characterized by their prompt production of interleukin-4 (IL-4) and interferon-γ (IFN-γ), which enables them to modulate diverse immune responses. Recently, we enlarged this concept by identifying a distinct IL-17-producing iNKT cell subset, named iNKT17 cells. The mechanisms leading to the acquisition of this new iNKT cell activity are unknown. Herein we show that IL-17-producing iNKT cells are already present in the thymus, predominantly among a subset regarded so far as an immature stage of thymic iNKT cell development, the CD1d tetramerposCD44posNK1.1negCD4neg cells. Using EGFP reporter mice, we demonstrate that the transcription factor ROR-γt is critical for the thymic differentiation of this subset because only ROR-γtpos iNKT cells are capable of massively secreting IL-17. Moreover, IL-17-producing CD1d tetramerposCD44posNK1.1negCD4neg thymic iNKT cells have reached a mature differentiation stage because they fail to generate other cell subsets in fetal thymic organ culture. Conversely, thymic ROR-γtneg iNKT cell precursors give rise to progeny, but acquire neither ROR-γt expression nor the ability to secrete IL-17. In conclusion, our findings demonstrate an alternative thymic pathway leading to the development of iNKT17 cells that requires ROR-γt expression.
PLOS ONE | 2011
Pamela Gasse; Nicolas Riteau; Rachel Vacher; Marie-Laure Michel; Alain Fautrel; Franco Di Padova; Lizette Fick; Sabine Charron; Vincent Lagente; Gérard Eberl; Marc Le Bert; Valerie Quesniaux; François Huaux; Maria do Carmo Leite-de-Moraes; Bernhard Ryffel; Isabelle Couillin
Background Idiopathic pulmonary fibrosis is a devastating as yet untreatable disease. We demonstrated recently the predominant role of the NLRP3 inflammasome activation and IL-1β expression in the establishment of pulmonary inflammation and fibrosis in mice. Methods The contribution of IL-23 or IL-17 in pulmonary inflammation and fibrosis was assessed using the bleomycin model in deficient mice. Results We show that bleomycin or IL-1β-induced lung injury leads to increased expression of early IL-23p19, and IL-17A or IL-17F expression. Early IL-23p19 and IL-17A, but not IL-17F, and IL-17RA signaling are required for inflammatory response to BLM as shown with gene deficient mice or mice treated with neutralizing antibodies. Using FACS analysis, we show a very early IL-17A and IL-17F expression by RORγt+ γδ T cells and to a lesser extent by CD4αβ+ T cells, but not by iNKT cells, 24 hrs after BLM administration. Moreover, IL-23p19 and IL-17A expressions or IL-17RA signaling are necessary to pulmonary TGF-β1 production, collagen deposition and evolution to fibrosis. Conclusions Our findings demonstrate the existence of an early IL-1β-IL-23-IL-17A axis leading to pulmonary inflammation and fibrosis and identify innate IL-23 and IL-17A as interesting drug targets for IL-1β driven lung pathology.
Journal of The American Society of Nephrology | 2009
Laurent Mesnard; Alexandre Castro Keller; Marie-Laure Michel; Sophie Vandermeersch; Cédric Rafat; Emmanuel Letavernier; Yves Tillet; Eric Rondeau; Maria C. Leite-de-Moraes
Invariant natural killer T (iNKT) cells represent a particular subset of T lymphocytes capable of producing several cytokines, which exert regulatory or effector functions, following stimulation of the T cell receptor. In this study, we investigated the influence of iNKT cells on the development of experimental anti-glomerular basement membrane glomerulonephritis (anti-GBM GN). After injection of anti-GBM serum, the number of kidney iNKT cells rapidly increased. iNKT cell-deficient mice (Jalpha18-/-) injected with anti-GBM serum demonstrated worse renal function, increased proteinuria, and greater glomerular and tubular injury compared with similarly treated wild-type mice. We did not detect significant differences in Th1/Th2 polarization in renal tissue that might have explained the severity of disease in Jalpha18-/- mice. Interestingly, expression of both TGF-beta and TGF-beta-induced (TGFBI) mRNA was higher in wild-type kidneys compared with Jalpha18-/- kidneys, suggesting a possible protective role for TGF-beta in anti-GBM GN. Administration of an anti-TGF-beta neutralizing antibody significantly enhanced the severity of disease in wild-type, but not Jalpha18-/-, mice. In conclusion, in experimental anti-GBM GN, iNKT cells attenuate disease severity and TGF-beta has a renoprotective role.
Gut | 2018
Bruno Lamas; Marie-Laure Michel; Nadine Waldschmitt; Hang-Phuong Pham; Vassiliki Zacharioudaki; Louise Dupraz; Myriam Delacre; Jane M. Natividad; Gregory Da Costa; Julien Planchais; Bruno Sovran; Chantal Bridonneau; Adrien Six; Philippe Langella; Mathias L. Richard; Mathias Chamaillard; Harry Sokol
Objective In association with innate and adaptive immunity, the microbiota controls the colonisation resistance against intestinal pathogens. Caspase recruitment domain 9 (CARD9), a key innate immunity gene, is required to shape a normal gut microbiota. Card9 –/– mice are more susceptible to the enteric mouse pathogen Citrobacter rodentium that mimics human infections with enteropathogenic and enterohaemorrhagic Escherichia coli. Here, we examined how CARD9 controls C. rodentium infection susceptibility through microbiota-dependent and microbiota-independent mechanisms. Design C. rodentium infection was assessed in conventional and germ-free (GF) wild-type (WT) and Card9 –/– mice. To explore the impact of Card9 –/–microbiota in infection susceptibility, GF WT mice were colonised with WT (WT→GF) or Card9 –/– (Card9–/– →GF) microbiota before C. rodentium infection. Microbiota composition was determined by 16S rDNA gene sequencing. Inflammation severity was determined by histology score and lipocalin level. Microbiota–host immune system interactions were assessed by quantitative PCR analysis. Results CARD9 controls pathogen virulence in a microbiota-independent manner by supporting a specific humoral response. Higher susceptibility to C. rodentium-induced colitis was observed in Card9–/– →GF mice. The microbiota of Card9 –/– mice failed to outcompete the monosaccharide-consuming C. rodentium, worsening the infection severity. A polysaccharide-enriched diet counteracted the ecological advantage of C. rodentium and the defective pathogen-specific antibody response in Card9 –/– mice. Conclusions CARD9 modulates the susceptibility to intestinal infection by controlling the pathogen virulence in a microbiota-dependent and microbiota-independent manner. Genetic susceptibility to intestinal pathogens can be overridden by diet intervention that restores humoural immunity and a competing microbiota.
Mbio | 2018
Bruno Sovran; Julien Planchais; Sarah Jegou; Marjolene Straube; Bruno Lamas; Jane M. Natividad; Allison Agus; Louise Dupraz; Jérémy Glodt; Gregory Da Costa; Marie-Laure Michel; Philippe Langella; Mathias L. Richard; Harry Sokol
BackgroundHost-microbe balance maintains intestinal homeostasis and strongly influences inflammatory conditions such as inflammatory bowel diseases (IBD). Here we focused on bacteria-fungi interactions and their implications on intestinal inflammation, a poorly understood area.MethodsDextran sodium sulfate (DSS)-induced colitis was assessed in mice treated with vancomycin (targeting gram-positive bacteria) or colistin (targeting Enterobacteriaceae) and supplemented with either Saccharomyces boulardii CNCM I-745 or Candida albicans. Inflammation severity as well as bacterial and fungal microbiota compositions was monitored.ResultsWhile S. boulardii improved DSS-induced colitis and C. albicans worsened it in untreated settings, antibiotic treatment strongly modified DSS susceptibility and effects of fungi on colitis. Vancomycin-treated mice were fully protected from colitis, while colistin-treated mice retained colitis phenotype but were not affected anymore by administration of fungi. Antibacterial treatments not only influenced bacterial populations but also had indirect effects on fungal microbiota. Correlations between bacterial and fungal relative abundance were dramatically decreased in colistin-treated mice compared to vancomycin-treated and control mice, suggesting that colistin-sensitive bacteria are involved in interactions with fungi. Restoration of the Enterobacteriaceae population by administrating colistin-resistant Escherichia coli reestablished both beneficial effects of S. boulardii and pathogenic effects of C. albicans on colitis severity. This effect was at least partly mediated by an improved gut colonization by fungi.ConclusionsFungal colonization of the gut is affected by the Enterobacteriaceae population, indirectly modifying effects of mycobiome on the host. This finding provides new insights into the role of inter-kingdom functional interactions in intestinal physiopathology and potentially in IBD.
Nature Communications | 2018
Jane M. Natividad; Bruno Lamas; Hang Phuong Pham; Marie-Laure Michel; Dominique Rainteau; Chantal Bridonneau; Gregory Da Costa; Johan van Hylckama Vlieg; Bruno Sovran; Celia Chamignon; Julien Planchais; Mathias L. Richard; Philippe Langella; Patrick Veiga; Harry Sokol
Dietary lipids favor the growth of the pathobiont Bilophila wadsworthia, but the relevance of this expansion in metabolic syndrome pathogenesis is poorly understood. Here, we showed that B. wadsworthia synergizes with high fat diet (HFD) to promote higher inflammation, intestinal barrier dysfunction and bile acid dysmetabolism, leading to higher glucose dysmetabolism and hepatic steatosis. Host-microbiota transcriptomics analysis reveal pathways, particularly butanoate metabolism, which may underlie the metabolic effects mediated by B. wadsworthia. Pharmacological suppression of B. wadsworthia-associated inflammation demonstrate the bacterium’s intrinsic capacity to induce a negative impact on glycemic control and hepatic function. Administration of the probiotic Lactobacillus rhamnosus CNCM I-3690 limits B. wadsworthia-induced immune and metabolic impairment by limiting its expansion, reducing inflammation and reinforcing intestinal barrier. Our results suggest a new avenue for interventions against western diet-driven inflammatory and metabolic diseases.Lipid intake is known to promote Bilophila wadsworthia growth. Here the authors show that B. wadsworthia aggravates high fat diet induced metabolic dysfunctions and its suppression, both pharmacologically or mediated by Lactobacillus rhamnosus, limits the severity of metabolic impairment.
Cell Metabolism | 2018
Jane M. Natividad; Allison Agus; Julien Planchais; Bruno Lamas; Anne Charlotte Jarry; Rebeca Martín; Marie-Laure Michel; Caroline Chong-Nguyen; Ronan Roussel; Marjolene Straube; Sarah Jegou; Claire McQuitty; Maude Le Gall; Gregory Da Costa; Emmanuelle Lecornet; Chloé Michaudel; Morgane Modoux; Jérémy Glodt; Chantal Bridonneau; Bruno Sovran; Louise Dupraz; André Bado; Mathias L. Richard; Philippe Langella; Boris Hansel; Jean-Marie Launay; Ramnik J. Xavier; Henri Duboc; Harry Sokol
The Journal of Allergy and Clinical Immunology | 2009
Philippe Devillier; A. Montagut; Marie-Laure Michel; Sylvie Galvain; M. Le Gall; P. Zieglmayer; Z. René; Patrick Lemell; F. Horak