Marie Lillehammer
Norwegian University of Life Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marie Lillehammer.
Journal of Dairy Science | 2009
Marie Lillehammer; Ben J. Hayes; T.H.E. Meuwissen; Michael E. Goddard
Dairy farming is carried out under a wide range of production environments, including large variations in the level of feeding. Although reranking of dairy sires based on the level of feeding of their daughters has been reported, detecting the genetic mutations that cause this genotype by environment interaction has not been previously attempted. In our experiment to find genetic markers for such mutations, we selected 388 Holstein bulls from the Australian dairy bull population and genotyped them for 9,919 single nucleotide polymorphism (SNP) markers. Production data, consisting of first-lactation test-day records for milk yield, fat yield, protein yield, protein percentage, and fat percentage, from the daughters of the genotyped bulls were used to estimate the effect of each SNP, which was modeled as a regression on herd mean test-day yield, where herd mean test-day yield is a descriptor of the environment. Data were analyzed with 4 models; in 2 models, daughter records were analyzed directly, with and without taking sire relationships into account. With the other 2 models, sire reaction norms for each trait were calculated and marker effects on the sire reaction norms were estimated with and without taking sire relationships into account. The results showed that using daughter records directly and accounting for sire relationships was necessary to obtain high power and to limit the number of false positives. With this approach, SNP with significant effects were found for all traits. Log transformation of the data did not affect the power of gene detection. The significant markers were categorized according to their joint effects on production and environmental sensitivity. Potential gene candidates and application of the markers is discussed. About one-third of the significant markers affect intercept and slope in opposite directions, and some of these facilitate marker-assisted selection for robustness.
Genetics Selection Evolution | 2013
Marie Lillehammer; Theo H. E. Meuwissen; Anna K. Sonesson
BackgroundGenomic selection can increase genetic gain within aquaculture breeding programs, but the high costs related to high-density genotyping of a large number of individuals would make the breeding program expensive. In this study, a low-cost method using low-density genotyping of pre-selected candidates and their sibs was evaluated by stochastic simulation.MethodsA breeding scheme with selection for two traits, one measured on candidates and one on sibs was simulated. Genomic breeding values were estimated within families and combined with conventional family breeding values for candidates that were pre-selected based on conventional BLUP breeding values. This strategy was compared with a conventional breeding scheme and a full genomic selection program for which genomic breeding values were estimated across the whole population. The effects of marker density, level of pre-selection and number of sibs tested and genotyped for the sib-trait were studied.ResultsWithin-family genomic breeding values increased genetic gain by 15% and reduced rate of inbreeding by 15%. Genetic gain was robust to a reduction in marker density, with only moderate reductions, even for very low densities. Pre-selection of candidates down to approximately 10% of the candidates before genotyping also had minor effects on genetic gain, but depended somewhat on marker density. The number of test-individuals, i.e. individuals tested for the sib-trait, affected genetic gain, but the fraction of the test-individuals genotyped only affected the relative contribution of each trait to genetic gain.ConclusionsA combination of genomic within-family breeding values, based on low-density genotyping, and conventional BLUP family breeding values was shown to be a possible low marker density implementation of genomic selection for species with large full-sib families for which the costs of genotyping must be kept low without compromising the effect of genomic selection on genetic gain.
Genetics Selection Evolution | 2015
Panya Sae-Lim; Antti Kause; Matti Janhunen; Harri Vehviläinen; Heikki Koskinen; Bjarne Gjerde; Marie Lillehammer; Han A Mulder
BackgroundWhen rainbow trout from a single breeding program are introduced into various production environments, genotype-by-environment (GxE) interaction may occur. Although growth and its uniformity are two of the most important traits for trout producers worldwide, GxE interaction on uniformity of growth has not been studied. Our objectives were to quantify the genetic variance in body weight (BW) and its uniformity and the genetic correlation (rg) between these traits, and to investigate the degree of GxE interaction on uniformity of BW in breeding (BE) and production (PE) environments using double hierarchical generalized linear models. Log-transformed data were also used to investigate whether the genetic variance in uniformity of BW, GxE interaction on uniformity of BW, and rg between BW and its uniformity were influenced by a scale effect.ResultsAlthough heritability estimates for uniformity of BW were low and of similar magnitude in BE (0.014) and PE (0.012), the corresponding coefficients of genetic variation reached 19 and 21%, which indicated a high potential for response to selection. The genetic re-ranking for uniformity of BW (rg = 0.56) between BE and PE was moderate but greater after log-transformation, as expressed by the low rg (-0.08) between uniformity in BE and PE, which indicated independent genetic rankings for uniformity in the two environments when the scale effect was accounted for. The rg between BW and its uniformity were 0.30 for BE and 0.79 for PE but with log-transformed BW, these values switched to -0.83 and -0.62, respectively.ConclusionsGenetic variance exists for uniformity of BW in both environments but its low heritability implies that a large number of relatives are needed to reach even moderate accuracy of selection. GxE interaction on uniformity is present for both environments and sib-testing in PE is recommended when the aim is to improve uniformity across environments. Positive and negative rg between BW and its uniformity estimated with original and log-transformed BW data, respectively, indicate that increased BW is genetically associated with increased variance in BW but with a decrease in the coefficient of variation. Thus, the scale effect substantially influences the genetic parameters of uniformity, especially the sign and magnitude of its rg.
Genetics | 2008
Marie Lillehammer; Michael E. Goddard; Heidi Nilsen; Erling Sehested; Hanne Gro Olsen; Sigbjørn Lien; Theo H. E. Meuwissen
Genotype-by-environment interactions for production traits in dairy cattle have often been observed, while QTL analyses have focused on detecting genes with general effects on production traits. In this study, a QTL search for genes with environmental interaction for the traits milk yield, protein yield, and fat yield were performed on Bos taurus autosome 6 (BTA6), also including information about the previously investigated candidate genes ABCG2 and OPN. The animals in the study were Norwegian Red. Eighteen grandsires and 716 sires were genotyped for 362 markers on BTA6. Every marker bracket was regarded as a putative QTL position. The effects of the candidate genes and the putative QTL were modeled as a regression on an environmental parameter (herd year), which is based on the predicted herd-year effect for the trait. Two QTL were found to have environmentally dependent effects on milk yield. These QTL were located 3.6 cM upstream and 9.1 cM downstream from ABCG2. No environmentally dependent QTL was found to significantly affect protein or fat yield.
Genetics Selection Evolution | 2009
Marie Lillehammer; Jørgen Ødegård; Theo H. E. Meuwissen
The combination of a sire model and a random regression term describing genotype by environment interactions may lead to biased estimates of genetic variance components because of heterogeneous residual variance. In order to test different models, simulated data with genotype by environment interactions, and dairy cattle data assumed to contain such interactions, were analyzed. Two animal models were compared to four sire models. Models differed in their ability to handle heterogeneous variance from different sources. Including an individual effect with a (co)variance matrix restricted to three times the sire (co)variance matrix permitted the modeling of the additive genetic variance not covered by the sire effect. This made the ability of sire models to handle heterogeneous genetic variance approximately equivalent to that of animal models. When residual variance was heterogeneous, a different approach to account for the heterogeneity of variance was needed, for example when using dairy cattle data in order to prevent overestimation of genetic heterogeneity of variance. Including environmental classes can be used to account for heterogeneous residual variance.
Genetics Selection Evolution | 2007
Marie Lillehammer; Jørgen Ødegård; Theo H. E. Meuwissen
Two random regression models, where the effect of a putative QTL was regressed on an environmental gradient, are described. The first model estimates the correlation between intercept and slope of the random regression, while the other model restricts this correlation to 1 or -1, which is expected under a bi-allelic QTL model. The random regression models were compared to a model assuming no gene by environment interactions. The comparison was done with regards to the models ability to detect QTL, to position them accurately and to detect possible QTL by environment interactions. A simulation study based on a granddaughter design was conducted, and QTL were assumed, either by assigning an effect independent of the environment or as a linear function of a simulated environmental gradient. It was concluded that the random regression models were suitable for detection of QTL effects, in the presence and absence of interactions with environmental gradients. Fixing the correlation between intercept and slope of the random regression had a positive effect on power when the QTL effects re-ranked between environments.
PLOS ONE | 2015
Panya Sae-Lim; Han A Mulder; Bjarne Gjerde; Heikki Koskinen; Marie Lillehammer; Antti Kause
Rainbow trout is farmed globally under diverse uncontrollable environments. Fish with low macroenvironmental sensitivity (ES) of growth is important to thrive and grow under these uncontrollable environments. The ES may evolve as a correlated response to selection for growth in one environment when the genetic correlation between ES and growth is nonzero. The aims of this study were to quantify additive genetic variance for ES of body weight (BW), defined as the slope of reaction norm across breeding environment (BE) and production environment (PE), and to estimate the genetic correlation (r g(int, sl)) between BW and ES. To estimate heritable variance of ES, the coheritability of ES was derived using selection index theory. The BW records from 43,040 rainbow trout performing either in freshwater or seawater were analysed using a reaction norm model. High additive genetic variance for ES (9584) was observed, inferring that genetic changes in ES can be expected. The coheritability for ES was either -0.06 (intercept at PE) or -0.08 (intercept at BE), suggesting that BW observation in either PE or BE results in low accuracy of selection for ES. Yet, the r g(int, sl) was negative (-0.41 to -0.33) indicating that selection for BW in one environment is expected to result in more sensitive fish. To avoid an increase of ES while selecting for BW, it is possible to have equal genetic gain in BW in both environments so that ES is maintained stable.
Journal of Dairy Science | 2017
Sini Elina Wallén; Marie Lillehammer; Theo H. E. Meuwissen
Alternative genomic selection and traditional BLUP breeding schemes were compared for the genetic improvement of feed efficiency in simulated Norwegian Red dairy cattle populations. The change in genetic gain over time and achievable selection accuracy were studied for milk yield and residual feed intake, as a measure of feed efficiency. When including feed efficiency in genomic BLUP schemes, it was possible to achieve high selection accuracies for genomic selection, and all genomic BLUP schemes gave better genetic gain for feed efficiency than BLUP using a pedigree relationship matrix. However, introducing a second trait in the breeding goal caused a reduction in the genetic gain for milk yield. When using contracted test herds with genotyped and feed efficiency recorded cows as a reference population, adding an additional 4,000 new heifers per year to the reference population gave accuracies that were comparable to a male reference population that used progeny testing with 250 daughters per sire. When the test herd consisted of 500 or 1,000 cows, lower genetic gain was found than using progeny test records to update the reference population. It was concluded that to improve difficult to record traits, the use of contracted test herds that had additional recording (e.g., measurements required to calculate feed efficiency) is a viable option, possibly through international collaborations.
Journal of Dairy Science | 2007
Marie Lillehammer; M. Árnyasi; Sigbjørn Lien; Hanne Gro Olsen; E. Sehested; Jørgen Ødegård; T.H.E. Meuwissen
Genetics Selection Evolution | 2013
Marie Lillehammer; Jørgen Ødegård; P. Madsen; Bjarne Gjerde; Terje Refstie; Morten Rye