Marie Potier
French Institute of Health and Medical Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marie Potier.
Molecular Cancer Therapeutics | 2006
Marie Potier; Virginie Joulin; Sébastien Roger; Pierre Besson; Marie-Lise Jourdan; Jean-Yves LeGuennec; Philippe Bougnoux; Christophe Vandier
Potassium channels have been involved in epithelial tumorigenesis but the role of small-conductance Ca2+-activated K+ channels is unknown. We report here that small-conductance Ca2+-activated K+ channels are expressed in a highly metastasizing mammary cancer cell line, MDA-MB-435s. Patch-clamp recordings showed typical small-conductance Ca2+-activated K+ channel–mediated currents sensitive to apamin, 4-aminopyridine, and tetraethylammonium. Moreover, the cells displayed a high intracellular calcium concentration, which was decreased after 24 hours of apamin treatment. By regulating membrane potential and intracellular calcium concentration, these channels were involved in MDA-MB-435s cell migration, but not in proliferation. Only SK3 protein expression was observed in these cells in contrast to SK2, which was expressed both in cancer and noncancer cell lines. Whereas small interfering RNA directed against SK3 almost totally abolished MDA-MB-435s cell migration, transient expression of SK3 increased migration of the SK3-deficient cell lines, MCF-7 and 184A1. SK3 channel was solely expressed in tumor breast biopsies and not in nontumor breast tissues. Thus, SK3 protein channel seems to be a new mediator of breast cancer cell migration and represents a potential target for a new class of anticancer agents. [Mol Cancer Ther 2006;5(11):2946–53]
Brain | 2016
Lorraine Hamelin; Julien Lagarde; Guillaume Dorothée; Claire Leroy; Mickael Labit; Robert A. Comley; Leonardo Cruz de Souza; Hélène Corne; Luce Dauphinot; Maxime Bertoux; Bruno Dubois; Philippe Gervais; Olivier Colliot; Marie Potier; Michel Bottlaender; Marie Sarazin
While emerging evidence suggests that neuroinflammation plays a crucial role in Alzheimers disease, the impact of the microglia response in Alzheimers disease remains a matter of debate. We aimed to study microglial activation in early Alzheimers disease and its impact on clinical progression using a second-generation 18-kDa translocator protein positron emission tomography radiotracer together with amyloid imaging using Pittsburgh compound B positron emission tomography. We enrolled 96 subjects, 64 patients with Alzheimers disease and 32 controls, from the IMABio3 study, who had both (11)C-Pittsburgh compound B and (18)F-DPA-714 positron emission tomography imaging. Patients with Alzheimers disease were classified as prodromal Alzheimers disease (n = 38) and Alzheimers disease dementia (n = 26). Translocator protein-binding was measured using a simple ratio method with cerebellar grey matter as reference tissue, taking into account regional atrophy. Images were analysed at the regional (volume of interest) and at the voxel level. Translocator protein genotyping allowed the classification of all subjects in high, mixed and low affinity binders. Thirty high+mixed affinity binders patients with Alzheimers disease were dichotomized into slow decliners (n = 10) or fast decliners (n = 20) after 2 years of follow-up. All patients with Alzheimers disease had an amyloid positive Pittsburgh compound B positron emission tomography. Among controls, eight had positive amyloid scans (n = 6 high+mixed affinity binders), defined as amyloidosis controls, and were analysed separately. By both volumes of interest and voxel-wise comparison, 18-kDa translocator protein-binding was higher in high affinity binders, mixed affinity binders and high+mixed affinity binders Alzheimers disease groups compared to controls, especially at the prodromal stage, involving the temporo-parietal cortex. Translocator protein-binding was positively correlated with Mini-Mental State Examination scores and grey matter volume, as well as with Pittsburgh compound B binding. Amyloidosis controls displayed higher translocator protein-binding than controls, especially in the frontal cortex. We found higher translocator protein-binding in slow decliners than fast decliners, with no difference in Pittsburgh compound B binding. Microglial activation appears at the prodromal and possibly at the preclinical stage of Alzheimers disease, and seems to play a protective role in the clinical progression of the disease at these early stages. The extent of microglial activation appears to differ between patients, and could explain the overlap in translocator protein binding values between patients with Alzheimers disease and amyloidosis controls.
Experimental Cell Research | 2009
Aurélie Chantôme; Alban Girault; Marie Potier; Christine Collin; Pascal Vaudin; Jean-Christophe Pagès; Christophe Vandier; Virginie Joulin
Cell migration and invasion are required for tumour cells to spread from the primary tumour bed so as to form secondary tumours at distant sites. We report evidence of an unusual expression of KCa2.3 (SK3) protein in melanoma cell lines but not in normal melanocytes. Knockdown of the KCa2.3 channel led to plasma membrane depolarization, decreased 2D and 3D cell motility. Conversely, enforced production of KCa2.3 protein in KCa2.3 non-expressing cells led to the plasma membrane becoming hyperpolarized, and enhanced cell motility. In contrast, KCa3.1 channels had no effect on cell motility despite an active role in regulating membrane potential. Our data also suggest that membrane hyperpolarization increases melanoma cell motility and that this occurs through the KCa2.3 channel. Our findings reveal a previously unknown function of the KCa2.3 channel, and suggest that the KCa2.3 channel might be the only member of the Ca(2+)-activated K(+) channel family involved in melanoma cell motility pathways.
Current Pharmaceutical Design | 2006
Sébastien Roger; Marie Potier; Christophe Vandier; Pierre Besson; Jean-Yves Le Guennec
Early detection and treatment of cancers have increased survival and improved clinical outcome. The development of metastases is often associated with a poor prognostic of survival. Finding early markers of metastasis and developing new therapies against their development is a great challenge. Since a few years, there is more evidence that ionic channels are involved in the oncogenic process. Among these, voltage-gated sodium channels expressed in non-nervous or non-muscular organs are often associated with the metastatic behaviour of different cancers. The aim of this review is to describe the current knowledge on the functional expression of voltage-gated sodium channels and their biological roles in different cancers such as prostate, breast, lung (small cells and non-small cells) and leukaemia. In the conclusion, we develop conceptual approaches to understand how such channels can be involved in the metastatic process and conclude that blockers targeted toward these channels are promising new therapeutic solutions against metastatic cancers.
Cell Reports | 2015
Guillaume van Niel; Ptissam Bergam; Aurelie Di Cicco; Ilse Hurbain; Alessandra Lo Cicero; Florent Dingli; Roberta Palmulli; Cécile Fort; Marie Potier; Leon J. Schurgers; Damarys Loew; Daniel Lévy; Graça Raposo
Accumulation of toxic amyloid oligomers is a key feature in the pathogenesis of amyloid-related diseases. Formation of mature amyloid fibrils is one defense mechanism to neutralize toxic prefibrillar oligomers. This mechanism is notably influenced by apolipoprotein E variants. Cells that produce mature amyloid fibrils to serve physiological functions must exploit specific mechanisms to avoid potential accumulation of toxic species. Pigment cells have tuned their endosomes to maximize the formation of functional amyloid from the protein PMEL. Here, we show that ApoE is associated with intraluminal vesicles (ILV) within endosomes and remain associated with ILVs when they are secreted as exosomes. ApoE functions in the ESCRT-independent sorting mechanism of PMEL onto ILVs and regulates the endosomal formation of PMEL amyloid fibrils in vitro and in vivo. This process secures the physiological formation of amyloid fibrils by exploiting ILVs as amyloid nucleating platforms.
Trends in Biochemical Sciences | 2015
Reiner A. Veitia; Marie Potier
Single-gene deletions, duplications, and misregulation, as well as aneuploidy, can lead to stoichiometric imbalances within macromolecular complexes and cellular networks, causing their malfunction. Such alterations can be responsible for inherited or somatic genetic disorders including Mendelian diseases, aneuploid syndromes, and cancer. We review the effects of gene dosage alterations at the transcriptomic and proteomic levels, and the various responses of the cell to counteract their effects. Furthermore, we explore several biochemical models and ideas that can provide the rationale for treatments modulating the effects of gene dosage imbalances.
Biochemical and Biophysical Research Communications | 2010
Marie Potier; Truong An Tran; Aurélie Chantôme; Alban Girault; Virginie Joulin; Philippe Bougnoux; Christophe Vandier; Fabrice Pierre
Lost of adenomatous polyposis coli gene (Apc) disturbs the migration of intestinal epithelial cells but the mechanisms have not been fully characterized. Since we have demonstrated that SK3/KCa2.3 channel promotes cancer cell migration, we hypothesized that Apc mutation may affect SK3/KCa2.3 channel-mediated colon epithelial cell motility. We report evidence that SK3/KCa2.3 channel promotes colon epithelial cells motility. Following Apc mutation SK3/KCa2.3 expression is largely reduced leading to a suppression of the SK3/KCa2.3 channel mediated-cell migration. Our findings reveal a previously unknown function of the SK3/KCa2.3 channel in epithelial colonic cells, and suggest that Apc is a powerful regulator SK3/KCa2.3 channel.
PLOS ONE | 2012
Clémentine Ripoll; Isabelle Rivals; Emilie Ait Yahya-Graison; Luce Dauphinot; Evelyne Paly; Clothilde Mircher; Aimé Ravel; Yann Grattau; Henri Bléhaut; André Mégarbané; Guy Dembour; Renaud Touraine; Nicole Créau; Marie Potier; Jean Maurice Delabar
Forty percent of people with Down syndrome exhibit heart defects, most often an atrioventricular septal defect (AVSD) and less frequently a ventricular septal defect (VSD) or atrial septal defect (ASD). Lymphoblastoid cell lines (LCLs) were established from lymphocytes of individuals with trisomy 21, the chromosomal abnormality causing Down syndrome. Gene expression profiles generated from DNA microarrays of LCLs from individuals without heart defects (CHD−; n = 22) were compared with those of LCLs from patients with cardiac malformations (CHD+; n = 21). After quantile normalization, principal component analysis revealed that AVSD carriers could be distinguished from a combined group of ASD or VSD (ASD+VSD) carriers. From 9,758 expressed genes, we identified 889 and 1,016 genes differentially expressed between CHD− and AVSD and CHD− and ASD+VSD, respectively, with only 119 genes in common. A specific chromosomal enrichment was found in each group of affected genes. Among the differentially expressed genes, more than 65% are expressed in human or mouse fetal heart tissues (GEO dataset). Additional LCLs from new groups of AVSD and ASD+VSD patients were analyzed by quantitative PCR; observed expression ratios were similar to microarray results. Analysis of GO categories revealed enrichment of genes from pathways regulating clathrin-mediated endocytosis in patients with AVSD and of genes involved in semaphorin-plexin-driven cardiogenesis and the formation of cytoplasmic microtubules in patients with ASD-VSD. A pathway-oriented search revealed enrichment in the ciliome for both groups and a specific enrichment in Hedgehog and Jak-stat pathways among ASD+VSD patients. These genes or related pathways are therefore potentially involved in normal cardiogenesis as well as in cardiac malformations observed in individuals with trisomy 21.
Molecular Syndromology | 2016
Jean Maurice Delabar; Bernadette Allinquant; Diana W. Bianchi; Thomas Blumenthal; Alain D. Dekker; Jamie O. Edgin; John P. O'Bryan; Mara Dierssen; Marie Potier; Frances K. Wiseman; Fayçal Guedj; Nicole Créau; Roger H. Reeves; Katheleen J. Gardiner; Jorge Busciglio
Down syndrome (DS) is the most common genetic cause of intellectual disability (ID) in humans with an incidence of ∼1:1,000 live births worldwide. It is caused by the presence of an extra copy of all or a segment of the long arm of human chromosome 21 (trisomy 21). People with DS present with a constellation of phenotypic alterations involving most organs and organ systems. ID is present in all people with DS, albeit with variable severity. DS is also the most frequent genetic cause of Alzheimers disease (AD), and ∼50% of those with DS will develop AD-related dementia. In the last few years, significant progress has been made in understanding the crucial genotype-phenotype relationships in DS, in identifying the alterations in molecular pathways leading to the various clinical conditions present in DS, and in preclinical evaluations of potential therapies to improve the overall health and well-being of individuals with DS. In June 2015, 230 scientists, advocates, patients, and family members met in Paris for the 1st International Conference of the Trisomy 21 Research Society. Here, we report some of the most relevant presentations that took place during the meeting.
Frontiers in Behavioral Neuroscience | 2016
Marie Potier; Roger H. Reeves
Research on the multiple aspects of cognitive impairment in Down syndrome (DS), from genes to behavior to treatment, has made tremendous progress in the last decade as reflected in current clinical trials to improve learning and memory. Congenital intellectual disabilities such as DS originate from the earliest stages of development and both the acquisition of cognitive skills and neurodegenerative pathologies are cumulative. Comorbidities such as cardiac malformations, sleep apnea, diabetes, and dementia are frequent in the DS population, as well, and their increased risk in this genetically sensitized population provides a means of assessing early stages of these pathologies that affect the entire population.