Marie Prat
Institut de radioprotection et de sûreté nucléaire
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marie Prat.
Wound Repair and Regeneration | 2010
Eric Bey; Marie Prat; Patrick Duhamel; Marc Benderitter; M. Brachet; F. Trompier; Pierre Battaglini; Isabelle Ernou; Laetitia Boutin; Muriel Gourven; Frédérique Tissedre; Sandrine Créa; Cédric Ait Mansour; Thierry de Revel; Hervé Carsin; Patrick Gourmelon; Jean-Jacques Lataillade
The therapeutic management of severe radiation burns remains a challenging issue today. Conventional surgical treatment including excision, skin autograft, or flap often fails to prevent unpredictable and uncontrolled extension of the radiation‐induced necrotic process. In a recent very severe accidental radiation burn, we demonstrated the efficiency of a new therapeutic approach combining surgery and local cellular therapy using autologous mesenchymal stem cells (MSC), and we confirmed the crucial place of the dose assessment in this medical management. The patient presented a very significant radiation lesion located on the arm, which was first treated by several surgical procedures: iterative excisions, skin graft, latissimus muscle dorsi flap, and forearm radial flap. This conventional surgical therapy was unfortunately inefficient, leading to the use of an innovative cell therapy strategy. Autologous MSC were obtained from three bone marrow collections and were expanded according to a clinical‐grade protocol using platelet‐derived growth factors. A total of five local MSC administrations were performed in combination with skin autograft. After iterative local MSC administrations, the clinical evolution was favorable and no recurrence of radiation inflammatory waves occurred during the patients 8‐month follow‐up. The benefit of this local cell therapy could be linked to the “drug cell” activity of MSC by modulating the radiation inflammatory processes, as suggested by the decrease in the C‐reactive protein level observed after each MSC administration. The success of this combined treatment leads to new prospects in the medical management of severe radiation burns and more widely in the improvement of wound repair.
Radiation Research | 2008
Jean-Marc Bertho; Laurence Roy; M. Souidi; Marc Benderitter; Yann Gueguen; Jean-Jacques Lataillade; Marie Prat; T. Fagot; T. De Revel; Patrick Gourmelon
Abstract Bertho, J. M., Roy, L., Souidi, M., Benderitter, M., Gueguen, Y., Lataillade, J. J., Prat, M., Fagot, T., De Revel, T. and Gourmelon, P. New Biological Indicators to Evaluate and Monitor Radiation-Induced Damage: An Accident Case Report. Radiat. Res. 169, 543–550 (2008). The aim of this work was to use several new biological indicators to evaluate damage to the main physiological systems in a victim exposed accidentally to ionizing radiation. Blood samples were used for biological dosimetry and for measurement of the plasma concentrations of several molecules: Flt3 ligand to assess the hematopoietic system, citrulline as an indicator of the digestive tract, and several oxysterols as lipid metabolism and vascular markers. The cytogenetic evaluation estimated the dose to the victim to be between 4.2 and 4.8 Gy, depending on the methodology used. Monitoring the Flt3 ligand demonstrated the severity of bone marrow aplasia. In contrast, the citrulline concentration showed the absence of gastrointestinal damage. Variations in oxysterol concentrations suggested radiation-induced damage to the liver and the cardiovascular system. These results were correlated with those from classic biochemical markers, which demonstrated severe damage to the hematopoietic system and suggested the appearance of subclinical damage to the liver and cardiovascular system. These results demonstrate for the first time the importance of a multiparameter biological approach in the evaluation of radiation damage after accidental irradiation.
Health Physics | 2010
Marc Benderitter; Patrick Gourmelon; Eric Bey; Alain Chapel; I. Clairand; Marie Prat; Jean Jacques Lataillade
Treatment of severe radiation burns remains a difficult medical challenge. The response of the skin to ionizing radiation results in a range of clinical manifestations. The most severe manifestations are highly invalidating. Although several therapeutic strategies (excision, skin grafting, skin or muscle flaps) have been used with some success, none have proven entirely satisfying. The concept that stem cell injections could be used for reducing normal tissue injury has been discussed for a number of years. Mesenchymal stem cells therapy may be a promising therapeutic approach for improving radiation-induced skin and muscle damages. Pre-clinical and clinical benefit of mesenchymal stem cell injection for ulcerated skin and muscle restoration after high dose radiation exposure has been successfully demonstrated. Three first patients suffering from severe radiological syndrome were successfully treated in France based on autologous human grade mesenchymal stem cell injection combined to plastic surgery or skin graft. Stem cell therapy has to be improved to the point that hospitals can put safe, efficient, and reliable clinical protocols into practice.
International Journal of Radiation Oncology Biology Physics | 2003
Aymeri Huchet; Yazid Belkacemi; Johanna Frick; Marie Prat; Ioanna Muresan-Kloos; Dan Altan; Alain Chapel; Norbert Claude Gorin; Patrick Gourmelon; Jean Marc Bertho
PURPOSE To determine whether variations in the plasma Flt-3 ligand (FL) concentration after radiotherapy (RT) may serve as a biomarker for radiation-induced bone marrow damage. METHODS AND MATERIALS Twenty-seven patients were followed during RT. The irradiated bone marrow volume was determined. The blood cell counts and plasma FL concentrations were evaluated before and after RT. The expression of membrane-bound FL and mRNA expression were also defined in circulating blood cells. RESULTS We found a negative correlation between the plasma FL concentration and the number of circulating white blood cells and platelets during RT. Moreover, the overall amount of FL in the blood of patients during RT correlated directly with both the cumulated radiation dose and the proportion of irradiated bone marrow. CONCLUSIONS We demonstrated that the variations in plasma FL concentration directly reflect the radiation-induced bone marrow damage during fractionated local RT. We suggest a possible use for FL monitoring as a means to predict the occurrence of Grade 3-4 leukopenia or thrombocytopenia during the course of RT.
Radiation Research | 2005
Marie Prat; Christelle Demarquay; Johanna Frick; Dominique Thierry; Norbert-Claude Gorin; Jean Marc Bertho
Abstract Prat, M., Demarquay, C., Frick, J., Thierry, D., Gorin, N. C. and Bertho, J. M. Radiation-Induced Increase in Plasma Flt3 Ligand Concentration in Mice: Evidence for the Implication of Several Cell Types. Radiat. Res. 163, 408–417 (2005). Circulating T lymphocytes were proposed as the main producer of Flt3 ligand. However, during aplasia, there is a drastic reduction in the number of T lymphocytes, while plasma Flt3 ligand concentration is increased. This contradiction prompted us to compare variations in plasma Flt3 ligand during radiation-induced aplasia in BALB/c mice and in T-lymphocyte-deficient NOD-SCID mice to delineate the role of T lymphocytes in the increase in Flt3 ligand concentration. The results showed that plasma Flt3 ligand concentration was increased similarly in the two strains of mice, and that Flt3 ligand concentration was negatively correlated to the number of residual hematopoietic progenitors. Moreover, the Flt3 ligand mRNA expression and Flt3 ligand protein concentration were similar in the two strains of mice in all organs tested, i.e. thymus, spleen, bone marrow, liver, brain and blood cells. These results confirm that Flt3 ligand concentration in the blood is a reflection of bone marrow function and that T lymphocytes are not the main regulator of Flt3 ligand variations during aplasia.
Stem Cell Research & Therapy | 2013
Marina Trouillas; Marie Prat; Christelle Doucet; Isabelle Ernou; Corinne Laplace-Builhé; Patrick Saint Blancard; Xavier Holy; Jean-Jacques Lataillade
IntroductionThis study investigated the promising effect of a new Platelet Glue obtained from Cryoprecipitation of Apheresis Platelet products (PGCAP) used in combination with Mesenchymal Stromal Cells (MSC) loaded on ceramic biomaterials to provide novel strategies enhancing bone repair.MethodsPGCAP growth factor content was analyzed by ELISA and compared to other platelet and plasma-derived products. MSC loaded on biomaterials (65% hydroxyapatite/35% beta-TCP or 100% beta-TCP) were embedded in PGCAP and grown in presence or not of osteogenic induction medium for 21 days. Biomaterials were then implanted subcutaneously in immunodeficient mice for 28 days. Effect of PGCAP on MSC was evaluated in vitro by proliferation and osteoblastic gene expression analysis and in vivo by histology and immunohistochemistry.ResultsWe showed that PGCAP, compared to other platelet-derived products, allowed concentrating large amount of growth factors and cytokines which promoted MSC and osteoprogenitor proliferation. Next, we found that PGCAP improves the proliferation of MSC and osteogenic-induced MSC. Furthermore, we demonstrated that PGCAP up-regulates the mRNA expression of osteogenic markers (Collagen type I, Osteonectin, Osteopontin and Runx2). In vivo, type I collagen expressed in ectopic bone-like tissue was highly enhanced in biomaterials embedded in PGCAP in the absence of osteogenic pre-induction. Better results were obtained with 65% hydroxyapatite/35% beta-TCP biomaterials as compared to 100% beta-TCP.ConclusionsWe have demonstrated that PGCAP is able to enhance in vitro MSC proliferation, osteoblastic differentiation and in vivo bone formation in the absence of osteogenic pre-induction. This clinically adaptable platelet glue could be of interest for improving bone repair.
Radiation Research | 2006
Marie Prat; Christelle Demarquay; Johanna Frick; Nicolas Dudoignon; Dominique Thierry; Jean Marc Bertho
Abstract Prat, M., Demarquay, C., Frick, J., Dudoignon, N., Thierry, D. and Bertho, J. M. Use of Flt3 Ligand to Evaluate Residual Hematopoiesis after Heterogeneous Irradiation in Mice. Radiat. Res. 166, 504–511 (2006). We evaluated the possibility of using plasma Flt3 ligand (FL) concentration as a biological indicator of bone marrow function after heterogeneous irradiation. Mice were irradiated with 4, 7.5 or 11 Gy with 25, 50, 75 or 100% of the bone marrow in the field of irradiation. This model of irradiation resulted in graded and controlled damage to the bone marrow. Mice exhibited a pancytopenia correlated with both the radiation dose and the percentage of bone marrow irradiated. The FL concentration in the blood increased with the severity of bone marrow aplasia. Nonlinear regression analysis showed that the FL concentration was strongly correlated with the total number of residual colony-forming cells 3 days after irradiation, allowing a precise estimate of residual hematopoiesis. Moreover, the FL concentration on day 3 postirradiation was correlated with the duration and severity of subsequent pancytopenia, suggesting that variations in FL concentrations might be used as a predictive indicator of bone marrow aplasia, especially by the use of linear regression equations describing these correlations. Our results provide a rationale for the use of FL concentration as a biological indicator of residual hematopoiesis after heterogeneous irradiation.
Radiation Research | 2005
Jean-Marc Bertho; Marie Prat; Johanna Frick; Christelle Demarquay; Marie-Hélène Gaugler; Nicolas Dudoignon; I. Clairand; Alain Chapel; Norbert-Claude Gorin; Dominique Thierry; Patrick Gourmelon
Abstract Bertho, J-M., Prat, M., Frick, J., Demarquay, C., Gaugler, M-H., Dudoignon, N., Clairand, I., Chapel, A., Gorin, N-C., Thierry, D. and Gourmelon, P. Application of Autologous Hematopoietic Cell Therapy to a Nonhuman Primate Model of Heterogeneous High-Dose Irradiation. Radiat. Res. 163, 557– 570 (2005). We developed a model of heterogeneous irradiation in a nonhuman primate to test the feasibility of autologous hematopoietic cell therapy for the treatment of radiation accident victims. Animals were irradiated either with 8 Gy to the body with the right arm shielded to obtain 3.4 Gy irradiation or with 10 Gy total body and 4.4 Gy to the arm. Bone marrow mononuclear cells were harvested either before irradiation or after irradiation from an underexposed area of the arm and were expanded in previously defined culture conditions. We showed that hematopoietic cells harvested after irradiation were able to expand and to engraft when reinjected 7 days after irradiation. Recovery was observed in all 8-Gy-irradiated animals, and evidence for a partial recovery was observed in 10-Gy-irradiated animals. However, in 10-Gy-irradiated animals, digestive disease was observed from day 16 and resulted in the death of two animals. Immunohistological examinations showed damage to the intestine, lungs, liver and kidneys and suggested radiation damage to endothelial cells. Overall, our results provide evidence that such an in vivo model of heterogeneous irradiation may be representative of accidental radiation exposures and may help to define the efficacy of therapeutic interventions such as autologous cell therapy in radiation accident victims.
Leukemia & Lymphoma | 2006
Marie Prat; Johanna Frick; Jean-Philippe Laporte; Dominique Thierry; Norbert-Claude Gorin; Jean-Marc Bertho
The present study aimed to follow-up variations in plasma Flt3 ligand (FL) concentration after hematopoietic stem cell transplantation and to compare the influence of conditioning regimens on variations in FL concentration. Ten patients undergoing a conditioning regimen, including BEAM, cyclophosphamide (Cy) + total body irradiation or Cy + anti-thymocyte globulins (ATG), which was then followed by hematopoietic stem cell transplantation, were studied. Plasma FL concentrations, white blood cell (WBC) expression of both FL mRNA and the membrane-bound form of FL were carried out at different times post-treatment. The results indicated that plasma FL concentration increased rapidly after the conditioning regimen in all patients, in correlation with the decrease in number of WBCs. The area under the curve of FL according to time was directly correlated with the duration of pancytopenia, except when ATG was included in the conditioning regimen. Although the number of patients was limited in this study, the comparison of ATG-treated patients and other patients suggests that plasma FL concentration is regulated by a complex mechanism partly involving circulating blood cells.
Pathologie Biologie | 2011
Laurent Bargues; Marie Prat; Thomas Leclerc; Eric Bey; Jean Jacques Lataillade
Severe burned patients need definitive and efficient wound coverage. Outcome of massive burns has been improved by using cultured epithelial autografts (CEA). Despite fragility, percentages of success take, cost of treatment and long-term tendency to contracture, this surgical technique has been developed in few burn centres. First improvements were to combine CEA and dermis-like substitute. Cultured skin substitutes provide earlier skin closure and satisfying functional result. These methods have been used successfully in massive burns. Second improvement was to allow skin regeneration by using epidermal stem cells. Stem cells have capacity to differentiate into keratinocytes, to promote wound repair and to regenerate skin appendages. Human mesenchymal stem cells contribute to wound healing and were evaluated in cutaneous radiation syndrome. Skin regeneration and tissue engineering methods remain a complex challenge and offer the possibility of new treatment for injured and burned patients.