Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marieke R. Gilmartin is active.

Publication


Featured researches published by Marieke R. Gilmartin.


Behavioral Neuroscience | 2005

Single neurons in the medial prefrontal cortex of the rat exhibit tonic and phasic coding during trace fear conditioning

Marieke R. Gilmartin; Matthew D. McEchron

Trace fear conditioning is a learning task that requires the association of an auditory conditioned stimulus (CS) and a shock unconditioned stimulus (US) that are separated by a 20-s trace interval. Single neuron activity was recorded from the prelimbic and infralimbic areas of the medial prefrontal cortex in rats during trace fear conditioning or nonassociative unpaired training. Prelimbic neurons showed learning-related increases in activity to the CS and US, whereas infralimbic neurons showed learning-related decreases in activity to these stimuli. A subset of prelimbic neurons exhibited sustained increases in activity during the trace interval. These sustained prelimbic responses may provide a bridging code that allows for overlapping representations of CS and US information within the trace fear conditioning circuit.


Learning & Memory | 2010

Trace and contextual fear conditioning require neural activity and NMDA receptor-dependent transmission in the medial prefrontal cortex

Marieke R. Gilmartin; Fred J. Helmstetter

The contribution of the medial prefrontal cortex (mPFC) to the formation of memory is a subject of considerable recent interest. Notably, the mechanisms supporting memory acquisition in this structure are poorly understood. The mPFC has been implicated in the acquisition of trace fear conditioning, a task that requires the association of a conditional stimulus (CS) and an aversive unconditional stimulus (UCS) across a temporal gap. In both rat and human subjects, frontal regions show increased activity during the trace interval separating the CS and UCS. We investigated the contribution of prefrontal neural activity in the rat to the acquisition of trace fear conditioning using microinfusions of the gamma-aminobutyric acid type A (GABA(A)) receptor agonist muscimol. We also investigated the role of prefrontal N-methyl-d-aspartate (NMDA) receptor-mediated signaling in trace fear conditioning using the NMDA receptor antagonist 2-amino-5-phosphonovaleric acid (APV). Temporary inactivation of prefrontal activity with muscimol or blockade of NMDA receptor-dependent transmission in mPFC impaired the acquisition of trace, but not delay, conditional fear responses. Simultaneously acquired contextual fear responses were also impaired in drug-treated rats exposed to trace or delay, but not unpaired, training protocols. Our results support the idea that synaptic plasticity within the mPFC is critical for the long-term storage of memory in trace fear conditioning.


Trends in Neurosciences | 2014

Prefrontal cortical regulation of fear learning

Marieke R. Gilmartin; Nicholas L. Balderston; Fred J. Helmstetter

The prefrontal cortex regulates the expression of fear based on previously learned information. Recently, this brain area has emerged as being crucial in the initial formation of fear memories, providing new avenues to study the neurobiology underlying aberrant learning in anxiety disorders. Here we review the circumstances under which the prefrontal cortex is recruited in the formation of memory, highlighting relevant work in laboratory animals and human subjects. We propose that the prefrontal cortex facilitates fear memory through the integration of sensory and emotional signals and through the coordination of memory storage in an amygdala-based network.


Nutritional Neuroscience | 2005

Perinatal nutritional iron deficiency permanently impairs hippocampus-dependent trace fear conditioning in rats

Matthew D. McEchron; Alex Y. Cheng; James R. Connor; Marieke R. Gilmartin

Abstract Many studies show that iron deficient (ID) children are at risk for poor cognitive development. This suggests that learning and cognitive centers in the brain, such as the hippocampus, may be compromised by developmental ID. The present study used a heart rate trace fear conditioning procedure in rats to show that perinatal nutritional ID impairs hippocampus-dependent learning. This procedure requires rats to associate a conditioned stimulus and a fearful unconditioned stimulus, which are separated by a trace interval. Rats were started on ID or control (CN) diets 10 days prior to birth, and learning was assessed on post natal day (PND)-28. The ID pups were impaired in trace fear conditioning, but an ID control group was not impaired in a non-trace basic fear conditioning procedure that does not depend on the hippocampus. Another group was switched from ID to CN diet on PND-31, and this group also showed impairments in trace fear conditioning when tested during early adulthood (i.e. PND-63). Separate control tests show that ID may produce skeletal motor deficits. The ID-induced learning impairments in this study, however, were not due to altered motor activity because learning was assessed using non-motor heart rate responses.


Behavioral Neuroscience | 2005

Single neurons in the dentate gyrus and CA1 of the hippocampus exhibit inverse patterns of encoding during trace fear conditioning.

Marieke R. Gilmartin; Matthew D. McEchron

Trace fear conditioning is a hippocampus-dependent learning task that requires the association of an auditory conditioned stimulus (CS) and a shock unconditioned stimulus (US) that are separated by a 20-s trace interval. Single-neuron activity was recorded simultaneously from the dentate gyrus (DG) and CA1 of rats during unpaired pseudoconditioning and subsequent trace fear conditioning. Single neurons in DG showed a progressive increase in learning-related activity to the CS and US across trace fear conditioning. Single neurons in CA1 showed an early increase in responding to the CS, which developed into a decrease in firing later in trace conditioning. Correlation analyses showed that DG and CA1 units exhibit inverse patterns of responding to the CS during trace fear conditioning.


The Journal of Neuroscience | 2013

Prefrontal Activity Links Nonoverlapping Events in Memory

Marieke R. Gilmartin; Hiroyuki Miyawaki; Fred J. Helmstetter; Kamran Diba

The medial prefrontal cortex (mPFC) plays an important role in memory. By maintaining a working memory buffer, neurons in prelimbic (PL) mPFC may selectively contribute to learning associations between stimuli that are separated in time, as in trace fear conditioning (TFC). Until now, evidence for this bridging role was largely descriptive. Here we used optogenetics to silence neurons in the PL mPFC of rats during learning in TFC. Memory formation was prevented when mPFC was silenced specifically during the interval separating the cue and shock. Our results provide support for a working memory function for these cells and indicate that associating two noncontiguous stimuli requires bridging activity in PL mPFC.


Learning & Memory | 2013

NR2A- and NR2B-Containing NMDA Receptors in the Prelimbic Medial Prefrontal Cortex Differentially Mediate Trace, Delay, and Contextual Fear Conditioning.

Marieke R. Gilmartin; Janine L. Kwapis; Fred J. Helmstetter

Activation of N-methyl-D-aspartate receptors (NMDAR) in the prelimbic medial prefrontal cortex (PL mPFC) is necessary for the acquisition of both trace and contextual fear memories, but it is not known how specific NR2 subunits support each association. The NR2B subunit confers unique properties to the NMDAR and may differentially regulate these two fear memories. Here we show that NR2A-containing NMDARs mediate trace, delay, and contextual fear memories, but NR2B-containing NMDARs are required only for trace conditioning, consistent with a role for PL mPFC in working memory.


Neurobiology of Learning and Memory | 2004

Trace fear conditioning is reduced in the aging rat

Matthew D. McEchron; Alex Y. Cheng; Marieke R. Gilmartin

Auditory trace fear conditioning is a hippocampus-dependent learning task that requires animals to associate an auditory conditioned stimulus (CS) and a fear-producing shock-unconditioned stimulus (US) that are separated by an empty 20-s trace interval. Previous studies have shown that aging impairs learning performance on hippocampus-dependent tasks. This study measured heart rate (HR) and freezing fear responses to determine if aging impairs hippocampus-dependent auditory trace fear conditioning in freely moving rats. Aging and Young rats received one long-trace fear conditioning session (10 trials). Each trial consisted of a tone-CS (5 s) and a shock-US separated by an empty 20-s trace interval. The next day rats received CS-alone retention trials. Young rats showed significantly larger HR and freezing responses on the initial CS-alone retention trials compared to the Aging rats. A control group of aging rats received fear conditioning trials with a short 1-s trace interval separating the CS and US. The Aging Short-Trace Group showed HR and freezing responses on the initial CS alone retention trials that were similar to the Young Long-Trace Group, but greater than the Aging Long-Trace Group. A second aging control group received unpaired CSs and USs, and showed no HR or freezing responses on CS-alone retention trials. These data show that HR and freezing are effective measures for detecting aging-related deficits in trace fear conditioning.


Neurobiology of Learning and Memory | 2012

Intra-amygdala infusion of the protein kinase Mzeta inhibitor ZIP disrupts foreground context fear memory.

Janine L. Kwapis; Timothy J. Jarome; Marieke R. Gilmartin; Fred J. Helmstetter

Protein kinase Mzeta has been the subject of much recent interest, as it is the only molecule currently identified to maintain memory. Despite the wealth of studies investigating PKMζ in memory, questions remain about which types of memory PKMζ supports. Further, it is unclear how long the inhibitor of PKMz, ζ-pseudosubstrate inhibitory peptide (ZIP) remains in the brain after infusion. Here, we demonstrate that foreground context fear memory requires PKMζ activity in the amygdala. We also show that ZIP is fully cleared from the brain by 24h after infusion. These data contribute to a growing body of literature that demonstrates that PKMζ plays a key role in maintaining amygdala-dependent memory and provides new information about the degradation timecourse of the most commonly used inhibitor of PKMζ, ZIP.


Scientific Reports | 2017

Long days enhance recognition memory and increase insulin-like growth factor 2 in the hippocampus

Adriano Dellapolla; Ian Kloehn; Harshida Pancholi; Ben L. Callif; David Wertz; Kayla E. Rohr; Matthew M. Hurley; Kimberly M. Baker; Samer Hattar; Marieke R. Gilmartin; Jennifer A. Evans

Light improves cognitive function in humans; however, the neurobiological mechanisms underlying positive effects of light remain unclear. One obstacle is that most rodent models have employed lighting conditions that cause cognitive deficits rather than improvements. Here we have developed a mouse model where light improves cognitive function, which provides insight into mechanisms underlying positive effects of light. To increase light exposure without eliminating daily rhythms, we exposed mice to either a standard photoperiod or a long day photoperiod. Long days enhanced long-term recognition memory, and this effect was abolished by loss of the photopigment melanopsin. Further, long days markedly altered hippocampal clock function and elevated transcription of Insulin-like Growth Factor2 (Igf2). Up-regulation of Igf2 occurred in tandem with suppression of its transcriptional repressor Wilm’s tumor1. Consistent with molecular de-repression of Igf2, IGF2 expression was increased in the hippocampus before and after memory training. Lastly, long days occluded IGF2-induced improvements in recognition memory. Collectively, these results suggest that light changes hippocampal clock function to alter memory, highlighting novel mechanisms that may contribute to the positive effects of light. Furthermore, this study provides insight into how the circadian clock can regulate hippocampus-dependent learning by controlling molecular processes required for memory consolidation.

Collaboration


Dive into the Marieke R. Gilmartin's collaboration.

Top Co-Authors

Avatar

Fred J. Helmstetter

University of Wisconsin–Milwaukee

View shared research outputs
Top Co-Authors

Avatar

Janine L. Kwapis

University of Wisconsin–Milwaukee

View shared research outputs
Top Co-Authors

Avatar

Matthew D. McEchron

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Alex Y. Cheng

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jennifer A. Evans

Morehouse School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Kamran Diba

University of Wisconsin–Milwaukee

View shared research outputs
Top Co-Authors

Avatar

Timothy J. Jarome

University of Wisconsin–Milwaukee

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge