Marika Vitikainen
VTT Technical Research Centre of Finland
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marika Vitikainen.
Biotechnology for Biofuels | 2014
Mari Häkkinen; Mari Valkonen; Ann Westerholm-Parvinen; Nina Aro; Mikko Arvas; Marika Vitikainen; Merja Penttilä; Markku Saloheimo; Tiina Pakula
BackgroundThe soft rot ascomycetal fungus Trichoderma reesei is utilized for industrial production of secreted enzymes, especially lignocellulose degrading enzymes. T. reesei uses several different enzymes for the degradation of plant cell wall-derived material, including 9 characterized cellulases, 15 characterized hemicellulases and at least 42 genes predicted to encode cellulolytic or hemicellulolytic activities. Production of cellulases and hemicellulases is modulated by environmental and physiological conditions. Several regulators affecting the expression of cellulase and hemicellulase genes have been identified but more factors still unknown are believed to be present in the genome of T. reesei.ResultsWe have used transcriptional profiling data from T. reesei cultures in which cellulase/hemicellulase production was induced by the addition of different lignocellulose-derived materials to identify putative novel regulators for cellulase and hemicellulase genes. Based on this induction data, supplemented with other published genome-wide data on different protein production conditions, 28 candidate regulatory genes were selected for further studies and they were overexpressed in T. reesei. Overexpression of seven genes led to at least 1.5-fold increased production of cellulase and/or xylanase activity in the modified strains as compared to the parental strain. Deletion of gene 77513, here designated as ace3, was found to be detrimental for cellulase production and for the expression of several cellulase genes studied. This deletion also significantly reduced xylanase activity and expression of xylan-degrading enzyme genes. Furthermore, our data revealed the presence of co-regulated chromosomal regions containing carbohydrate-active enzyme genes and candidate regulatory genes.ConclusionsTranscriptional profiling results from glycoside hydrolase induction experiments combined with a previous study of specific protein production conditions was shown to be an effective method for finding novel candidate regulatory genes affecting the production of cellulases and hemicellulases. Recombinant strains with improved cellulase and/or xylanase production properties were constructed, and a gene essential for cellulase gene expression was found. In addition, more evidence was gained on the chromatin level regional regulation of carbohydrate-active enzyme gene expression.
Applied and Environmental Microbiology | 2011
Matthias G. Steiger; Marika Vitikainen; Pekka Uskonen; Kurt Brunner; Gerhard Adam; Tiina Pakula; Merja Penttilä; Markku Saloheimo; Robert L. Mach; Astrid R. Mach-Aigner
ABSTRACT Hypocrea jecorina is an industrially important filamentous fungus due to its effective production of hydrolytic enzymes. It has received increasing interest because of its ability to convert lignocellulosic biomass to monomeric sugars, which can be converted into biofuels or platform chemicals. Genetic engineering of strains is a highly important means of meeting the requirements of tailor-made applications. Therefore, we report the development of a transformation system that allows highly efficient gene targeting by using a tmus53 (human LIG4 homolog) deletion strain. Moreover, it permits the unlimited reuse of the same marker by employing a Cre/loxP-based excision system. Both marker insertion and marker excision can be positively selected for by combining resistance to hygromycin B and loss of sensitivity to fluoroacetamide. Finally, the marker pyr4, also positively selectable for insertion and loss, can be used to remove the cre gene.
BMC Genomics | 2010
Marika Vitikainen; Mikko Arvas; Tiina Pakula; Merja Oja; Merja Penttilä; Markku Saloheimo
BackgroundTrichoderma reesei is the main industrial producer of cellulases and hemicellulases that are used to depolymerize biomass in a variety of biotechnical applications. Many of the production strains currently in use have been generated by classical mutagenesis. In this study we characterized genomic alterations in high-producing mutants of T. reesei by high-resolution array comparative genomic hybridization (aCGH). Our aim was to obtain genome-wide information which could be utilized for better understanding of the mechanisms underlying efficient cellulase production, and would enable targeted genetic engineering for improved production of proteins in general.ResultsWe carried out an aCGH analysis of four high-producing strains (QM9123, QM9414, NG14 and Rut-C30) using the natural isolate QM6a as a reference. In QM9123 and QM9414 we detected a total of 44 previously undocumented mutation sites including deletions, chromosomal translocation breakpoints and single nucleotide mutations. In NG14 and Rut-C30 we detected 126 mutations of which 17 were new mutations not documented previously. Among these new mutations are the first chromosomal translocation breakpoints identified in NG14 and Rut-C30. We studied the effects of two deletions identified in Rut-C30 (a deletion of 85 kb in the scaffold 15 and a deletion in a gene encoding a transcription factor) on cellulase production by constructing knock-out strains in the QM6a background. Neither the 85 kb deletion nor the deletion of the transcription factor affected cellulase production.ConclusionsaCGH analysis identified dozens of mutations in each strain analyzed. The resolution was at the level of single nucleotide mutation. High-density aCGH is a powerful tool for genome-wide analysis of organisms with small genomes e.g. fungi, especially in studies where a large set of interesting strains is analyzed.
Gene | 2010
Mikko Arvas; Niina Haiminen; Bart A. Smit; Jari Rautio; Marika Vitikainen; Marilyn G. Wiebe; Diego Martinez; Christine L. Chee; Joe Kunkel; Charles Sanchez; Mary Anne Nelson; Tiina Pakula; Markku Saloheimo; Merja Penttilä; Teemu Kivioja
Species-specific genes play an important role in defining the phenotype of an organism. However, current gene prediction methods can only efficiently find genes that share features such as sequence similarity or general sequence characteristics with previously known genes. Novel sequencing methods and tiling arrays can be used to find genes without prior information and they have demonstrated that novel genes can still be found from extensively studied model organisms. Unfortunately, these methods are expensive and thus are not easily applicable, e.g., to finding genes that are expressed only in very specific conditions. We demonstrate a method for finding novel genes with sparse arrays, applying it on the 33.9 Mb genome of the filamentous fungus Trichoderma reesei. Our computational method does not require normalisations between arrays and it takes into account the multiple-testing problem typical for analysis of microarray data. In contrast to tiling arrays, that use overlapping probes, only one 25 mer microarray oligonucleotide probe was used for every 100b. Thus, only relatively little space on a microarray slide was required to cover the intergenic regions of a genome. The analysis was done as a by-product of a conventional microarray experiment with no additional costs. We found at least 23 good candidates for novel transcripts that could code for proteins and all of which were expressed at high levels. Candidate genes were found to neighbour ire1 and cre1 and many other regulatory genes. Our simple, low-cost method can easily be applied to finding novel species-specific genes without prior knowledge of their sequence properties.
Biomacromolecules | 2017
Wenwen Fang; Arja Paananen; Marika Vitikainen; Salla Koskela; Ann Westerholm-Parvinen; Jussi J. Joensuu; Christopher Landowski; Merja Penttilä; Markus B. Linder; Päivi Laaksonen
We investigated how a genetically engineered resilin fusion protein modifies cellulose surfaces. We characterized the pH-responsive behavior of a resilin-like polypeptide (RLP) having terminal cellulose binding modules (CBM) and showed its binding to cellulose nanofibrils (CNF). Characterization of the resilin fusion protein at different pHs revealed substantial conformational changes of the protein, which were observed as swelling and contraction of the protein layer bound to the nanocellulose surface. In addition, we showed that employment of the modified resilin in cellulose hydrogel and nanopaper increased their modulus of stiffness through a cross-linking effect.
Colloids and Surfaces B: Biointerfaces | 2018
Wenwen Fang; Nonappa; Marika Vitikainen; Pezhman Mohammadi; Salla Koskela; Miika Soikkeli; Ann Westerholm-Parvinen; Christopher Landowski; Merja Penttilä; Markus B. Linder; Päivi Laaksonen
Liquid-liquid phase transition known as coacervation of resilin-like-peptide fusion proteins containing different terminal domains were investigated. Two different modular proteins were designed and produced and their behavior were compared to a resilin-like-peptide without terminal domains. The size of the particle-like coacervates was modulated by the protein concentration, pH and temperature. The morphology and three-dimensional (3D) structural details of the coacervate particles were investigated by cryogenic transmission electron microscopy (cryo-TEM) and tomography (cryo-ET) reconstruction. Selective adhesion of the coacervates on cellulose and graphene surfaces was demonstrated.
Archive | 2011
Tiina Pakula; Markku Saloheimo; Mari Häkkinen; Ann Westerholm-Parvinen; Merja Penttilä; Marika Vitikainen
Archive | 2011
Tiina Pakula; Markku Saloheimo; Mari Häkkinen; Ann Westerholm-Parvinen; Merja Penttilä; Marika Vitikainen
Archive | 2011
Tiina Pakula; Markku Saloheimo; Mari Häkkinen; Ann Westerholm-Parvinen; Merja Penttilä; Marika Vitikainen
Archive | 2016
Markus B. Linder; Merja Penttilä; Géza R. Szilvay; Marja Ilmen; Arja Kiema; Nina Aro; Markku Saloheimo; Ann Westerholm-Parvinen; Marika Vitikainen; Arja Paananen; Jussi J. Joensuu