Marilyn Goudreault
University of Toronto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marilyn Goudreault.
Nature | 2002
Yuen Ho; Albrecht Gruhler; Adrian Heilbut; Gary D. Bader; Lynda Moore; Sally-Lin Adams; Anna Millar; Paul D. Taylor; Keiryn L. Bennett; Kelly Boutilier; Lingyun Yang; Cheryl Wolting; Ian M. Donaldson; Søren Schandorff; Juanita Shewnarane; Mai Vo; Joanne Taggart; Marilyn Goudreault; Brenda Muskat; Cris Alfarano; Danielle Dewar; Zhen Lin; Katerina Michalickova; Andrew Willems; Holly Sassi; Peter Aagaard Nielsen; Karina Juhl Rasmussen; Jens R. Andersen; Lene E. Johansen; Lykke H. Hansen
The recent abundance of genome sequence data has brought an urgent need for systematic proteomics to decipher the encoded protein networks that dictate cellular function. To date, generation of large-scale protein–protein interaction maps has relied on the yeast two-hybrid system, which detects binary interactions through activation of reporter gene expression. With the advent of ultrasensitive mass spectrometric protein identification methods, it is feasible to identify directly protein complexes on a proteome-wide scale. Here we report, using the budding yeast Saccharomyces cerevisiae as a test case, an example of this approach, which we term high-throughput mass spectrometric protein complex identification (HMS-PCI). Beginning with 10% of predicted yeast proteins as baits, we detected 3,617 associated proteins covering 25% of the yeast proteome. Numerous protein complexes were identified, including many new interactions in various signalling pathways and in the DNA damage response. Comparison of the HMS-PCI data set with interactions reported in the literature revealed an average threefold higher success rate in detection of known complexes compared with large-scale two-hybrid studies. Given the high degree of connectivity observed in this study, even partial HMS-PCI coverage of complex proteomes, including that of humans, should allow comprehensive identification of cellular networks.
Nature Methods | 2013
Dattatreya Mellacheruvu; Zachary Wright; Amber L. Couzens; Jean-Philippe Lambert; Nicole St-Denis; Tuo Li; Yana V. Miteva; Simon Hauri; Mihaela E. Sardiu; Teck Yew Low; Vincentius A. Halim; Richard D. Bagshaw; Nina C. Hubner; Abdallah Al-Hakim; Annie Bouchard; Denis Faubert; Damian Fermin; Wade H. Dunham; Marilyn Goudreault; Zhen Yuan Lin; Beatriz Gonzalez Badillo; Tony Pawson; Daniel Durocher; Benoit Coulombe; Ruedi Aebersold; Giulio Superti-Furga; Jacques Colinge; Albert J. R. Heck; Hyungwon Choi; Matthias Gstaiger
Affinity purification coupled with mass spectrometry (AP-MS) is a widely used approach for the identification of protein-protein interactions. However, for any given protein of interest, determining which of the identified polypeptides represent bona fide interactors versus those that are background contaminants (for example, proteins that interact with the solid-phase support, affinity reagent or epitope tag) is a challenging task. The standard approach is to identify nonspecific interactions using one or more negative-control purifications, but many small-scale AP-MS studies do not capture a complete, accurate background protein set when available controls are limited. Fortunately, negative controls are largely bait independent. Hence, aggregating negative controls from multiple AP-MS studies can increase coverage and improve the characterization of background associated with a given experimental protocol. Here we present the contaminant repository for affinity purification (the CRAPome) and describe its use for scoring protein-protein interactions. The repository (currently available for Homo sapiens and Saccharomyces cerevisiae) and computational tools are freely accessible at http://www.crapome.org/.
Cell | 2006
Clark D. Wells; James P. Fawcett; Andreas Traweger; Yojiro Yamanaka; Marilyn Goudreault; Kelly Elder; Sarang Kulkarni; Gerald Gish; Cristina Virag; Caesar Lim; Karen Colwill; Andrei Starostine; Pavel Metalnikov; Tony Pawson
Using functional and proteomic screens of proteins that regulate the Cdc42 GTPase, we have identified a network of protein interactions that center around the Cdc42 RhoGAP Rich1 and organize apical polarity in MDCK epithelial cells. Rich1 binds the scaffolding protein angiomotin (Amot) and is thereby targeted to a protein complex at tight junctions (TJs) containing the PDZ-domain proteins Pals1, Patj, and Par-3. Regulation of Cdc42 by Rich1 is necessary for maintenance of TJs, and Rich1 is therefore an important mediator of this polarity complex. Furthermore, the coiled-coil domain of Amot, with which it binds Rich1, is necessary for localization to apical membranes and is required for Amot to relocalize Pals1 and Par-3 to internal puncta. We propose that Rich1 and Amot maintain TJ integrity by the coordinate regulation of Cdc42 and by linking specific components of the TJ to intracellular protein trafficking.
Molecular & Cellular Proteomics | 2009
Marilyn Goudreault; Lisa M. D'Ambrosio; Michelle J. Kean; Michael J. Mullin; Brett Larsen; Amy Sanchez; Sidharth Chaudhry; Ginny I. Chen; Frank Sicheri; Alexey I. Nesvizhskii; Ruedi Aebersold; Brian Raught; Anne-Claude Gingras
The serine/threonine protein phosphatases are targeted to specific subcellular locations and substrates in part via interactions with a wide variety of regulatory proteins. Understanding these interactions is thus critical to understanding phosphatase function. Using an iterative affinity purification/mass spectrometry approach, we generated a high density interaction map surrounding the protein phosphatase 2A catalytic subunit. This approach recapitulated the assembly of the PP2A catalytic subunit into many different trimeric complexes but also revealed several new protein-protein interactions. Here we define a novel large multiprotein assembly, referred to as the striatin-interacting phosphatase and kinase (STRIPAK) complex. STRIPAK contains the PP2A catalytic (PP2Ac) and scaffolding (PP2A A) subunits, the striatins (PP2A regulatory B‴ subunits), the striatin-associated protein Mob3, the novel proteins STRIP1 and STRIP2 (formerly FAM40A and FAM40B), the cerebral cavernous malformation 3 (CCM3) protein, and members of the germinal center kinase III family of Ste20 kinases. Although the function of the CCM3 protein is unknown, the CCM3 gene is mutated in familial cerebral cavernous malformations, a condition associated with seizures and strokes. Our proteomics survey indicates that a large portion of the CCM3 protein resides within the STRIPAK complex, opening the way for further studies of CCM3 biology. The STRIPAK assembly establishes mutually exclusive interactions with either the CTTNBP2 proteins (which interact with the cytoskeletal protein cortactin) or a second subcomplex consisting of the sarcolemmal membrane-associated protein (SLMAP) and the related coiled-coil proteins suppressor of IKKε (SIKE) and FGFR1OP2. We have thus identified several novel PP2A-containing protein complexes, including a large assembly linking kinases and phosphatases to a gene mutated in human disease.
Molecular and Cellular Biology | 2008
Ivan M. Blasutig; Laura A. New; Ajitha Thanabalasuriar; Thamara K. Dayarathna; Marilyn Goudreault; Susan E. Quaggin; Shawn S.-C. Li; Samantha Gruenheid; Nina Jones; Tony Pawson
ABSTRACT We have analyzed the means by which the Nck family of adaptor proteins couples adhesion proteins to actin reorganization. The nephrin adhesion protein is essential for the formation of actin-based foot processes in glomerular podocytes. The clustering of nephrin induces its tyrosine phosphorylation, Nck recruitment, and sustained localized actin polymerization. Any one of three phosphorylated (p)YDXV motifs on nephrin is sufficient to recruit Nck through its Src homology 2 (SH2) domain and induce localized actin polymerization at these clusters. Similarly, Nck SH3 mutants in which only the second or third SH3 domain is functional can mediate nephrin-induced actin polymerization. However, combining such nephrin and Nck mutants attenuates actin polymerization at nephrin-Nck clusters. We propose that the multiple Nck SH2-binding motifs on nephrin and the multiple SH3 domains of Nck act cooperatively to recruit the high local concentration of effectors at sites of nephrin activation that is required to initiate and maintain actin polymerization in vivo. We also find that YDXV motifs in the Tir protein of enteropathogenic Escherichia coli and nephrin are functionally interchangeable, indicating that Tir reorganizes the actin cytoskeleton by molecular mimicry of nephrin-like signaling. Together, these data identify pYDXV/Nck signaling as a potent and portable mechanism for physiological and pathological actin regulation.
Journal of Biological Chemistry | 2011
Michelle J. Kean; Derek F. Ceccarelli; Marilyn Goudreault; M. Sanches; S. Tate; B. Larsen; Lucien C. D. Gibson; W. B. Derry; Ian C. Scott; L. Pelletier; George S. Baillie; Frank Sicheri; Anne-Claude Gingras
Cerebral cavernous malformations (CCMs) are alterations in brain capillary architecture that can result in neurological deficits, seizures, or stroke. We recently demonstrated that CCM3, a protein mutated in familial CCMs, resides predominantly within the STRIPAK complex (striatin interacting phosphatase and kinase). Along with CCM3, STRIPAK contains the Ser/Thr phosphatase PP2A. The PP2A holoenzyme consists of a core catalytic subunit along with variable scaffolding and regulatory subunits. Within STRIPAK, striatin family members act as PP2A regulatory subunits. STRIPAK also contains all three members of a subfamily of Sterile 20 kinases called the GCKIII proteins (MST4, STK24, and STK25). Here, we report that striatins and CCM3 bridge the phosphatase and kinase components of STRIPAK and map the interacting regions on each protein. We show that striatins and CCM3 regulate the Golgi localization of MST4 in an opposite manner. Consistent with a previously described function for MST4 and CCM3 in Golgi positioning, depletion of CCM3 or striatins affects Golgi polarization, also in an opposite manner. We propose that STRIPAK regulates the balance between MST4 localization at the Golgi and in the cytosol to control Golgi positioning.
Journal of Biological Chemistry | 2007
Derek F. Ceccarelli; Ivan M. Blasutig; Marilyn Goudreault; Zhiqin Li; Julie Ruston; Tony Pawson; Frank Sicheri
Pleckstrin homology (PH) domains are phosphoinositide (PI)-binding modules that target proteins to membrane surfaces. Here we define a family of PH domain proteins, including Tiam1 and ArhGAP9, that demonstrates specificity for PI(4,5)P2, as well as for PI(3,4,5)P3 and PI(3,4)P2, the products of PI 3-kinase. These PH domain family members utilize a non-canonical phosphoinositide binding pocket related to that employed by β-spectrin. Crystal structures of the PH domain of ArhGAP9 in complex with the headgroups of Ins(1,3,4)P3, Ins(1,4,5)P3, and Ins(1,3,5)P3 reveal how two adjacent phosphate positions in PI(3,4)P2, PI(4,5)P2, and PI(3,4,5)P3 are accommodated through flipped conformations of the bound phospholipid. We validate the non-canonical site of phosphoinositide interaction by showing that binding pocket mutations, which disrupt phosphoinositide binding in vitro, also disrupt membrane localization of Tiam1 in cells. We posit that the diversity in PI interaction modes displayed by PH domains contributes to their versatility of use in biological systems.
Proteomics | 2011
Dana V. Skarra; Marilyn Goudreault; Hyungwon Choi; Michael Mullin; Alexey I. Nesvizhskii; Anne-Claude Gingras; Richard E. Honkanen
Affinity purification coupled to mass spectrometry (AP‐MS) represents a powerful and proven approach for the analysis of protein–protein interactions. However, the detection of true interactions for proteins that are commonly considered background contaminants is currently a limitation of AP‐MS. Here using spectral counts and the new statistical tool, Significance Analysis of INTeractome (SAINT), true interaction between the serine/threonine protein phosphatase 5 (PP5) and a chaperonin, heat shock protein 90 (Hsp90), is discerned. Furthermore, we report and validate a new interaction between PP5 and an Hsp90 adaptor protein, stress‐induced phosphoprotein 1 (STIP1; HOP). Mutation of PP5, replacing key basic amino acids (K97A and R101A) in the tetratricopeptide repeat (TPR) region known to be necessary for the interactions with Hsp90, abolished both the known interaction of PP5 with cell division cycle 37 homolog and the novel interaction of PP5 with stress‐induced phosphoprotein 1. Taken together, the results presented demonstrate the usefulness of label‐free quantitative proteomics and statistical tools to discriminate between noise and true interactions, even for proteins normally considered as background contaminants.
Journal of Biological Chemistry | 2008
Ginny I. Chen; Sally Tisayakorn; Claus Jørgensen; Lisa M. D'Ambrosio; Marilyn Goudreault; Anne-Claude Gingras
Protein serine/threonine phosphatase 4 (PP4c) is an essential polypeptide involved in critical cellular processes such as microtubule growth and organization, DNA damage checkpoint recovery, apoptosis, and tumor necrosis factor α signaling. Like other phosphatases of the PP2A family, PP4c interacts with regulatory proteins, which specify substrate targeting and intracellular localization. The identification of these regulatory proteins is, therefore, key to fully understanding the function of this enzyme class. Here, using a sensitive affinity purification/mass spectrometry approach, we identify a novel, stable cytosolic PP4c interacting partner, KIAA1622, which we have renamed PP4R4. PP4R4 displays weak sequence homology with the A (scaffolding) subunit of the PP2A holoenzyme and specifically associates with PP4c (and not with the related PP2Ac or PP6c phosphatases). The PP4c·PP4R4 interaction is disrupted by mutations analogous to those abrogating the association of PP2Ac with PP2A A subunit. However, unlike the PP2A A subunit, which plays a scaffolding role, PP4R4 does not bridge PP4c with previously characterized PP4 regulatory subunits. PP4c·PP4R4 complexes exhibit phosphatase activity toward a fluorogenic substrate and γH2AX, but this activity is lower than that associated with the PP4c·PP4R2·PP4R3 complex, which itself is less active than the free PP4c catalytic subunit. Our data demonstrate that PP4R4 forms a novel cytosolic complex with PP4c, independent from the complexes containing PP4R1, PP4R2·PP4R3, and α4, and that the regulatory subunits of PP4c have evolved different modes of interaction with the catalytic subunit.
Journal of Biological Chemistry | 2011
Derek F. Ceccarelli; Rob C. Laister; Vikram Khipple Mulligan; Michelle J. Kean; Marilyn Goudreault; Ian C. Scott; W. Brent Derry; Avijit Chakrabartty; Anne-Claude Gingras; Frank Sicheri
CCM3 mutations give rise to cerebral cavernous malformations (CCMs) of the vasculature through a mechanism that remains unclear. Interaction of CCM3 with the germinal center kinase III (GCKIII) subfamily of Sterile 20 protein kinases, MST4, STK24, and STK25, has been implicated in cardiovascular development in the zebrafish, raising the possibility that dysregulated GCKIII function may contribute to the etiology of CCM disease. Here, we show that the amino-terminal region of CCM3 is necessary and sufficient to bind directly to the C-terminal tail region of GCKIII proteins. This same region of CCM3 was shown previously to mediate homodimerization through the formation of an interdigitated α-helical domain. Sequence conservation and binding studies suggest that CCM3 may preferentially heterodimerize with GCKIII proteins through a manner structurally analogous to that employed for CCM3 homodimerization.