Michelle J. Kean
University of Toronto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michelle J. Kean.
Molecular & Cellular Proteomics | 2009
Marilyn Goudreault; Lisa M. D'Ambrosio; Michelle J. Kean; Michael J. Mullin; Brett Larsen; Amy Sanchez; Sidharth Chaudhry; Ginny I. Chen; Frank Sicheri; Alexey I. Nesvizhskii; Ruedi Aebersold; Brian Raught; Anne-Claude Gingras
The serine/threonine protein phosphatases are targeted to specific subcellular locations and substrates in part via interactions with a wide variety of regulatory proteins. Understanding these interactions is thus critical to understanding phosphatase function. Using an iterative affinity purification/mass spectrometry approach, we generated a high density interaction map surrounding the protein phosphatase 2A catalytic subunit. This approach recapitulated the assembly of the PP2A catalytic subunit into many different trimeric complexes but also revealed several new protein-protein interactions. Here we define a novel large multiprotein assembly, referred to as the striatin-interacting phosphatase and kinase (STRIPAK) complex. STRIPAK contains the PP2A catalytic (PP2Ac) and scaffolding (PP2A A) subunits, the striatins (PP2A regulatory B‴ subunits), the striatin-associated protein Mob3, the novel proteins STRIP1 and STRIP2 (formerly FAM40A and FAM40B), the cerebral cavernous malformation 3 (CCM3) protein, and members of the germinal center kinase III family of Ste20 kinases. Although the function of the CCM3 protein is unknown, the CCM3 gene is mutated in familial cerebral cavernous malformations, a condition associated with seizures and strokes. Our proteomics survey indicates that a large portion of the CCM3 protein resides within the STRIPAK complex, opening the way for further studies of CCM3 biology. The STRIPAK assembly establishes mutually exclusive interactions with either the CTTNBP2 proteins (which interact with the cytoskeletal protein cortactin) or a second subcomplex consisting of the sarcolemmal membrane-associated protein (SLMAP) and the related coiled-coil proteins suppressor of IKKε (SIKE) and FGFR1OP2. We have thus identified several novel PP2A-containing protein complexes, including a large assembly linking kinases and phosphatases to a gene mutated in human disease.
Science Signaling | 2013
Amber L. Couzens; James D.R. Knight; Michelle J. Kean; Guoci Teo; Alexander Weiss; Wade H. Dunham; Zhen-Yuan Lin; Richard D. Bagshaw; Frank Sicheri; Tony Pawson; Jeffrey L. Wrana; Hyungwon Choi; Anne-Claude Gingras
Phosphoprotein recognition directs kinase-phosphatase interactions at multiple levels in the mammalian Hippo pathway. Switching Partners in the Hippo Pathway The Hippo kinase cascade, named for the large size of flies in which it was originally identified, is an evolutionarily conserved pathway that regulates cell proliferation during organogenesis. Couzens et al. used two different proteomic methods to define a protein interaction network surrounding the core proteins of the Hippo pathway. Mutational analysis and proteomic profiling of protein interactions that changed with pharmacological inhibition of phosphatase activity revealed that many interactions within the Hippo protein interaction network are governed by the phosphorylation status of serine and threonine residues. Members of the MOB1 kinase adaptor family that are known to bind the kinase LATS switched from interacting with positive components of the pathway, such as the kinases upstream of LATS, MST1 and MST2, early during phosphatase inhibition to interacting with putative negative pathway regulators, such as protein phosphatase 6, later during phosphatase inhibition. These results emphasize the importance of considering dephosphorylation as a key mechanism regulating Hippo signaling. The Hippo pathway regulates organ size and tissue homeostasis in response to multiple stimuli, including cell density and mechanotransduction. Pharmacological inhibition of phosphatases can also stimulate Hippo signaling in cell culture. We defined the Hippo protein-protein interaction network with and without inhibition of serine and threonine phosphatases by okadaic acid. We identified 749 protein interactions, including 599 previously unrecognized interactions, and demonstrated that several interactions with serine and threonine phosphatases were phosphorylation-dependent. Mutation of the T-loop of MST2 (mammalian STE20-like protein kinase 2), which prevented autophosphorylation, disrupted its association with STRIPAK (striatin-interacting phosphatase and kinase complex). Deletion of the amino-terminal forkhead-associated domain of SLMAP (sarcolemmal membrane–associated protein), a component of the STRIPAK complex, prevented its association with MST1 and MST2. Phosphatase inhibition produced temporally distinct changes in proteins that interacted with MOB1A and MOB1B (Mps one binder kinase activator–like 1A and 1B) and promoted interactions with upstream Hippo pathway proteins, such as MST1 and MST2, and with the trimeric protein phosphatase 6 complex (PP6). Mutation of three basic amino acids that are part of a phospho-serine– and phospho-threonine–binding domain in human MOB1B prevented its interaction with MST1 and PP6 in cells treated with okadaic acid. Collectively, our results indicated that changes in phosphorylation orchestrate interactions between kinases and phosphatases in Hippo signaling, providing a putative mechanism for pathway regulation.
Journal of Biological Chemistry | 2011
Michelle J. Kean; Derek F. Ceccarelli; Marilyn Goudreault; M. Sanches; S. Tate; B. Larsen; Lucien C. D. Gibson; W. B. Derry; Ian C. Scott; L. Pelletier; George S. Baillie; Frank Sicheri; Anne-Claude Gingras
Cerebral cavernous malformations (CCMs) are alterations in brain capillary architecture that can result in neurological deficits, seizures, or stroke. We recently demonstrated that CCM3, a protein mutated in familial CCMs, resides predominantly within the STRIPAK complex (striatin interacting phosphatase and kinase). Along with CCM3, STRIPAK contains the Ser/Thr phosphatase PP2A. The PP2A holoenzyme consists of a core catalytic subunit along with variable scaffolding and regulatory subunits. Within STRIPAK, striatin family members act as PP2A regulatory subunits. STRIPAK also contains all three members of a subfamily of Sterile 20 kinases called the GCKIII proteins (MST4, STK24, and STK25). Here, we report that striatins and CCM3 bridge the phosphatase and kinase components of STRIPAK and map the interacting regions on each protein. We show that striatins and CCM3 regulate the Golgi localization of MST4 in an opposite manner. Consistent with a previously described function for MST4 and CCM3 in Golgi positioning, depletion of CCM3 or striatins affects Golgi polarization, also in an opposite manner. We propose that STRIPAK regulates the balance between MST4 localization at the Golgi and in the cytosol to control Golgi positioning.
Molecular Biology of the Cell | 2012
Marko Jovic; Michelle J. Kean; Zsofia Szentpetery; Gordon Polevoy; Anne-Claude Gingras; Julie A. Brill; Tamas Balla
Trafficking of glucocerebrosidase (GBA) enzyme from the endoplasmic reticulum to the lysosome requires lysosomal integral membrane protein type 2 (LIMP-2), which is a receptor for GBA. This study shows that phosphatidylinositol 4-kinase (PI4K) type IIIβ controls the exit of LIMP-2/GBA complex from the Golgi, while PI4KIIα is required for the post-Golgi trafficking of the complex via the late endosomes.
Methods | 2012
Michelle J. Kean; Amber L. Couzens; Anne-Claude Gingras
Reversible phosphorylation events regulate critical aspects of cellular biology by affecting protein conformation, cellular localization, enzymatic activity and associations with interaction partners. Kinases and phosphatases interact not only with their substrates but also with regulatory subunits and other proteins, including scaffolds. In recent years, affinity purification coupled to mass spectrometry (AP-MS) has proven to be a powerful tool to identify protein-protein interactions (PPIs) involving kinases and phosphatases. In this review we outline general considerations for successful AP-MS, and describe strategies that we have used to characterize the interactions of kinases and phosphatases in human cells.
Journal of Biological Chemistry | 2011
Derek F. Ceccarelli; Rob C. Laister; Vikram Khipple Mulligan; Michelle J. Kean; Marilyn Goudreault; Ian C. Scott; W. Brent Derry; Avijit Chakrabartty; Anne-Claude Gingras; Frank Sicheri
CCM3 mutations give rise to cerebral cavernous malformations (CCMs) of the vasculature through a mechanism that remains unclear. Interaction of CCM3 with the germinal center kinase III (GCKIII) subfamily of Sterile 20 protein kinases, MST4, STK24, and STK25, has been implicated in cardiovascular development in the zebrafish, raising the possibility that dysregulated GCKIII function may contribute to the etiology of CCM disease. Here, we show that the amino-terminal region of CCM3 is necessary and sufficient to bind directly to the C-terminal tail region of GCKIII proteins. This same region of CCM3 was shown previously to mediate homodimerization through the formation of an interdigitated α-helical domain. Sequence conservation and binding studies suggest that CCM3 may preferentially heterodimerize with GCKIII proteins through a manner structurally analogous to that employed for CCM3 homodimerization.
Journal of Cell Science | 2014
Marko Jovic; Michelle J. Kean; Anna Dubankova; Evzen Boura; Anne-Claude Gingras; Julie A. Brill; Tamas Balla
ABSTRACT Specificity of membrane fusion in vesicular trafficking is dependent on proper subcellular distribution of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). Although SNARE complexes are fairly promiscuous in vitro, substantial specificity is achieved in cells owing to the spatial segregation and shielding of SNARE motifs prior to association with cognate Q-SNAREs. In this study, we identified phosphatidylinositol 4-kinase II&agr; (PI4K2A) as a binding partner of vesicle-associated membrane protein 3 (VAMP3), a small R-SNARE involved in recycling and retrograde transport, and found that the two proteins co-reside on tubulo-vesicular endosomes. PI4K2A knockdown inhibited VAMP3 trafficking to perinuclear membranes and impaired the rate of VAMP3-mediated recycling of the transferrin receptor. Moreover, depletion of PI4K2A significantly decreased association of VAMP3 with its cognate Q-SNARE Vti1a. Although binding of VAMP3 to PI4K2A did not require kinase activity, acute depletion of phosphatidylinositol 4-phosphate (PtdIns4P) on endosomes significantly delayed VAMP3 trafficking. Modulation of SNARE function by phospholipids had previously been proposed based on in vitro studies, and our study provides mechanistic evidence in support of these claims by identifying PI4K2A and PtdIns4P as regulators of an R-SNARE in intact cells.
Journal of Biological Chemistry | 2012
Barbara Costa; Michelle J. Kean; Volker Ast; James D.R. Knight; Alice Mett; Zehava Levy; Derek F. Ceccarelli; Beatriz Gonzalez Badillo; Roland Eils; Rainer König; Anne-Claude Gingras; Mike Fainzilber
Background: The cytoplasmic adaptor protein CCM2 interacts with the TrkA receptor tyrosine kinase to induce pediatric tumor cell death. Results: STK25 interacts with CCM2, and its kinase activity is necessary for TrkA-dependent death of medulloblastoma cells. Conclusion: STK25 mediates TrkA-CCM2 death signaling in medulloblastoma cells. Significance: These findings identify a downstream catalytic effector for receptor tyrosine kinase death signaling. The TrkA receptor tyrosine kinase induces death in medulloblastoma cells via an interaction with the cerebral cavernous malformation 2 (CCM2) protein. We used affinity proteomics to identify the germinal center kinase class III (GCKIII) kinases STK24 and STK25 as novel CCM2 interactors. Down-modulation of STK25, but not STK24, rescued medulloblastoma cells from NGF-induced TrkA-dependent cell death, suggesting that STK25 is part of the death-signaling pathway initiated by TrkA and CCM2. CCM2 can be phosphorylated by STK25, and the kinase activity of STK25 is required for death signaling. Finally, STK25 expression in tumors is correlated with positive prognosis in neuroblastoma patients. These findings delineate a death-signaling pathway downstream of neurotrophic receptor tyrosine kinases that may provide targets for therapeutic intervention in pediatric tumors of neural origin.
Molecular & Cellular Proteomics | 2017
Shawn Xiong; Amber L. Couzens; Michelle J. Kean; Daniel Y. Mao; Sebastian Guettler; Igor Kurinov; Anne-Claude Gingras; Frank Sicheri
MOB1 is a multifunctional protein best characterized for its integrative role in regulating Hippo and NDR pathway signaling in metazoans and the Mitotic Exit Network in yeast. Human MOB1 binds both the upstream kinases MST1 and MST2 and the downstream AGC group kinases LATS1, LATS2, NDR1, and NDR2. Binding of MOB1 to MST1 and MST2 is mediated by its phosphopeptide-binding infrastructure, the specificity of which matches the phosphorylation consensus of MST1 and MST2. On the other hand, binding of MOB1 to the LATS and NDR kinases is mediated by a distinct interaction surface on MOB1. By assembling both upstream and downstream kinases into a single complex, MOB1 facilitates the activation of the latter by the former through a trans-phosphorylation event. Binding of MOB1 to its upstream partners also renders MOB1 a substrate, which serves to differentially regulate its two protein interaction activities (at least in vitro). Our previous interaction proteomics analysis revealed that beyond associating with MST1 (and MST2), MOB1A and MOB1B can associate in a phosphorylation-dependent manner with at least two other signaling complexes, one containing the Rho guanine exchange factors (DOCK6-8) and the other containing the serine/threonine phosphatase PP6. Whether these complexes are recruited through the same mode of interaction as MST1 and MST2 remains unknown. Here, through a comprehensive set of biochemical, biophysical, mutational and structural studies, we quantitatively assess how phosphorylation of MOB1A regulates its interaction with both MST kinases and LATS/NDR family kinases in vitro. Using interaction proteomics, we validate the significance of our in vitro studies and also discover that the phosphorylation-dependent recruitment of PP6 phosphatase and Rho guanine exchange factor protein complexes differ in key respects from that elucidated for MST1 and MST2. Together our studies confirm and extend previous work to delineate the intricate regulatory steps in key signaling pathways.
Molecular & Cellular Proteomics | 2017
Shawn Xiong; Amber L. Couzens; Michelle J. Kean; Daniel Y. Mao; Sebastian Guettler; Igor Kurinov; Anne-Claude Gingras; Frank Sicheri
MOB1 is a multifunctional protein best characterized for its integrative role in regulating Hippo and NDR pathway signaling in metazoans and the Mitotic Exit Network in yeast. Human MOB1 binds both the upstream kinases MST1 and MST2 and the downstream AGC group kinases LATS1, LATS2, NDR1, and NDR2. Binding of MOB1 to MST1 and MST2 is mediated by its phosphopeptide-binding infrastructure, the specificity of which matches the phosphorylation consensus of MST1 and MST2. On the other hand, binding of MOB1 to the LATS and NDR kinases is mediated by a distinct interaction surface on MOB1. By assembling both upstream and downstream kinases into a single complex, MOB1 facilitates the activation of the latter by the former through a trans-phosphorylation event. Binding of MOB1 to its upstream partners also renders MOB1 a substrate, which serves to differentially regulate its two protein interaction activities (at least in vitro). Our previous interaction proteomics analysis revealed that beyond associating with MST1 (and MST2), MOB1A and MOB1B can associate in a phosphorylation-dependent manner with at least two other signaling complexes, one containing the Rho guanine exchange factors (DOCK6-8) and the other containing the serine/threonine phosphatase PP6. Whether these complexes are recruited through the same mode of interaction as MST1 and MST2 remains unknown. Here, through a comprehensive set of biochemical, biophysical, mutational and structural studies, we quantitatively assess how phosphorylation of MOB1A regulates its interaction with both MST kinases and LATS/NDR family kinases in vitro. Using interaction proteomics, we validate the significance of our in vitro studies and also discover that the phosphorylation-dependent recruitment of PP6 phosphatase and Rho guanine exchange factor protein complexes differ in key respects from that elucidated for MST1 and MST2. Together our studies confirm and extend previous work to delineate the intricate regulatory steps in key signaling pathways.