Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marina Campos Rocha is active.

Publication


Featured researches published by Marina Campos Rocha.


Molecular Microbiology | 2016

Mitogen activated protein kinases SakA(HOG1) and MpkC collaborate for Aspergillus fumigatus virulence.

Ariane Cristina Mendes de Oliveira Bruder Nascimento; Thaila Fernanda dos Reis; Patrícia Alves de Castro; Juliana I. Hori; Vinícius Leite Pedro Bom; Leandro José de Assis; Leandra Naira Zambelli Ramalho; Marina Campos Rocha; Iran Malavazi; Neil Andrew Brown; Vito Valiante; Axel A. Brakhage; Daisuke Hagiwara; Gustavo H. Goldman

Here, we investigated which stress responses were influenced by the MpkC and SakA mitogen‐activated protein kinases of the high‐osmolarity glycerol (HOG) pathway in the fungal pathogen Aspergillus fumigatus. The ΔsakA and the double ΔmpkC ΔsakA mutants were more sensitive to osmotic and oxidative stresses, and to cell wall damaging agents. Both MpkC::GFP and SakA::GFP translocated to the nucleus upon osmotic stress and cell wall damage, with SakA::GFP showing a quicker response. The phosphorylation state of MpkA was determined post exposure to high concentrations of congo red and Sorbitol. In the wild‐type strain, MpkA phosphorylation levels progressively increased in both treatments. In contrast, the ΔsakA mutant had reduced MpkA phosphorylation, and surprisingly, the double ΔmpkC ΔsakA had no detectable MpkA phosphorylation. A. fumigatus ΔsakA and ΔmpkC were virulent in mouse survival experiments, but they had a 40% reduction in fungal burden. In contrast, the ΔmpkC ΔsakA double mutant showed highly attenuated virulence, with approximately 50% mice surviving and a 75% reduction in fungal burden. We propose that both cell wall integrity (CWI) and HOG pathways collaborate, and that MpkC could act by modulating SakA activity upon exposure to several types of stresses and during CW biosynthesis.


Eukaryotic Cell | 2015

The Aspergillus fumigatus sitA Phosphatase Homologue Is Important for Adhesion, Cell Wall Integrity, Biofilm Formation, and Virulence

Vinícius Leite Pedro Bom; Patrícia Alves de Castro; Lizziane K. Winkelströter; Marçal Mariné; Juliana I. Hori; Leandra Naira Zambelli Ramalho; Thaila Fernanda dos Reis; Maria Helena S. Goldman; Neil Andrew Brown; Ranjith Rajendran; Gordon Ramage; Louise A. Walker; Carol A. Munro; Marina Campos Rocha; Iran Malavazi; Daisuke Hagiwara; Gustavo H. Goldman

ABSTRACT Aspergillus fumigatus is an opportunistic pathogenic fungus able to infect immunocompromised patients, eventually causing disseminated infections that are difficult to control and lead to high mortality rates. It is important to understand how the signaling pathways that regulate these factors involved in virulence are orchestrated. Protein phosphatases are central to numerous signal transduction pathways. Here, we characterize the A. fumigatus protein phosphatase 2A SitA, the Saccharomyces cerevisiae Sit4p homologue. The sitA gene is not an essential gene, and we were able to construct an A. fumigatus null mutant. The ΔsitA strain had decreased MpkA phosphorylation levels, was more sensitive to cell wall-damaging agents, had increased β-(1,3)-glucan and chitin, was impaired in biofilm formation, and had decreased protein kinase C activity. The ΔsitA strain is more sensitive to several metals and ions, such as MnCl2, CaCl2, and LiCl, but it is more resistant to ZnSO4. The ΔsitA strain was avirulent in a murine model of invasive pulmonary aspergillosis and induces an augmented tumor necrosis factor alpha (TNF-α) response in mouse macrophages. These results stress the importance of A. fumigatus SitA as a possible modulator of PkcA/MpkA activity and its involvement in the cell wall integrity pathway.


PLOS ONE | 2015

The Aspergillus fumigatus pkcAG579R Mutant Is Defective in the Activation of the Cell Wall Integrity Pathway but Is Dispensable for Virulence in a Neutropenic Mouse Infection Model

Marina Campos Rocha; Krissia Franco de Godoy; Patrícia Alves de Castro; Juliana I. Hori; Vinícius Leite Pedro Bom; Neil Andrew Brown; Anderson Ferreira da Cunha; Gustavo H. Goldman; Iran Malavazi

Aspergillus fumigatus is an opportunistic human pathogen, which causes the life-threatening disease, invasive pulmonary aspergillosis. In fungi, cell wall homeostasis is controlled by the conserved Cell Wall Integrity (CWI) pathway. In A. fumigatus this signaling cascade is partially characterized, but the mechanisms by which it is activated are not fully elucidated. In this study we investigated the role of protein kinase C (PkcA) in this signaling cascade. Our results suggest that pkcA is an essential gene and is activated in response to cell wall stress. Subsequently, we constructed and analyzed a non-essential A. fumigatus pkcA G579R mutant, carrying a Gly579Arg substitution in the PkcA C1B regulatory domain. The pkcA G579R mutation has a reduced activation of the downstream Mitogen-Activated Protein Kinase, MpkA, resulting in the altered expression of genes encoding cell wall-related proteins, markers of endoplasmic reticulum stress and the unfolded protein response. Furthermore, PkcAG579R is involved in the formation of proper conidial architecture and protection to oxidative damage. The pkcA G579R mutant elicits increased production of TNF-α and phagocytosis but it has no impact on virulence in a murine model of invasive pulmonary aspergillosis. These results highlight the importance of PkcA to the CWI pathway but also indicated that additional regulatory circuits may be involved in the biosynthesis and/or reinforcement of the A. fumigatus cell wall during infection.


G3: Genes, Genomes, Genetics | 2016

Aspergillus fumigatus MADS-Box Transcription Factor rlmA Is Required for Regulation of the Cell Wall Integrity and Virulence

Marina Campos Rocha; João Henrique Tadini Marilhano Fabri; Krissia Franco de Godoy; Patrícia Alves de Castro; Juliana I. Hori; Anderson Ferreira da Cunha; Mark Arentshorst; Arthur F. J. Ram; Cees A. M. J. J. van den Hondel; Gustavo H. Goldman; Iran Malavazi

The Cell Wall Integrity (CWI) pathway is the primary signaling cascade that controls the de novo synthesis of the fungal cell wall, and in Saccharomyces cerevisiae this event is highly dependent on the RLM1 transcription factor. Here, we investigated the function of RlmA in the fungal pathogen Aspergillus fumigatus. We show that the ΔrlmA strain exhibits an altered cell wall organization in addition to defects related to vegetative growth and tolerance to cell wall-perturbing agents. A genetic analysis indicated that rlmA is positioned downstream of the pkcA and mpkA genes in the CWI pathway. As a consequence, rlmA loss-of-function leads to the altered expression of genes encoding cell wall-related proteins. RlmA positively regulates the phosphorylation of MpkA and is induced at both protein and transcriptional levels during cell wall stress. The rlmA was also involved in tolerance to oxidative damage and transcriptional regulation of genes related to oxidative stress adaptation. Moreover, the ΔrlmA strain had attenuated virulence in a neutropenic murine model of invasive pulmonary aspergillosis. Our results suggest that RlmA functions as a transcription factor in the A. fumigatus CWI pathway, acting downstream of PkcA-MpkA signaling and contributing to the virulence of this fungus.


Mbio | 2017

The Aspergillus fumigatus CrzA Transcription Factor Activates Chitin Synthase Gene Expression during the Caspofungin Paradoxical Effect

Laure Nicolas Annick Ries; Marina Campos Rocha; Patrícia Alves de Castro; Rafael Silva-Rocha; Roberto Nascimento Silva; Fernanda Zanolli Freitas; Leandro José de Assis; Maria Célia Bertolini; Iran Malavazi; Gustavo H. Goldman

ABSTRACT Aspergillus fumigatus is an opportunistic fungal pathogen that causes invasive aspergillosis (IA), a life-threatening disease in immunocompromised humans. The echinocandin caspofungin, adopted as a second-line therapy in combating IA, is a β-1,3-glucan synthase inhibitor, which, when used in high concentrations, reverts the anticipated A. fumigatus growth inhibition, a phenomenon called the “caspofungin paradoxical effect” (CPE). The CPE has been widely associated with increased chitin content in the cell wall due to a compensatory upregulation of chitin synthase-encoding genes. Here, we demonstrate that the CPE is dependent on the cell wall integrity (CWI) mitogen-activated protein kinase MpkAMPK1 and its associated transcription factor (TF) RlmARLM1, which regulate chitin synthase gene expression in response to different concentrations of caspofungin. Furthermore, the calcium- and calcineurin-dependent TF CrzA binds to and regulates the expression of specific chitin synthase genes during the CPE. These results suggest that the regulation of cell wall biosynthetic genes occurs by several cellular signaling pathways. In addition, CrzA is also involved in cell wall organization in the absence of caspofungin. Differences in the CPE were also observed between two A. fumigatus clinical isolates, which led to the identification of a novel basic leucine zipper TF, termed ZipD. This TF functions in the calcium-calcineurin pathway and is involved in the regulation of cell wall biosynthesis genes. This study therefore unraveled additional mechanisms and novel factors governing the CPE response, which ultimately could aid in developing more effective antifungal therapies. IMPORTANCE Systemic Aspergillus fumigatus infections are often accompanied by high mortality rates. The fungal cell wall is important for infection as it has immunomodulatory and immunoevasive properties. Paradoxical growth of A. fumigatus in the presence of high concentrations of the cell wall-disturbing agent caspofungin has been observed for more than a decade, although the mechanistic nature of this phenomenon remains largely uncharacterized. Here, we show that the CWI pathway components MpkA and RlmA as well as the calcium/calcineurin-responsive transcription factor CrzA regulate the expression of cell wall biosynthetic genes during the caspofungin paradoxical effect (CPE). Furthermore, an additional, novel calcium/calcineurin-responsive transcription factor was identified to play a role in cell wall biosynthesis gene expression during the CPE. This work paints a crucial role for calcium metabolism in the CPE and provides further insight into the complex regulation of cell wall biosynthesis, which could ultimately lead to the development of more efficient antifungal therapies. IMPORTANCE Systemic Aspergillus fumigatus infections are often accompanied by high mortality rates. The fungal cell wall is important for infection as it has immunomodulatory and immunoevasive properties. Paradoxical growth of A. fumigatus in the presence of high concentrations of the cell wall-disturbing agent caspofungin has been observed for more than a decade, although the mechanistic nature of this phenomenon remains largely uncharacterized. Here, we show that the CWI pathway components MpkA and RlmA as well as the calcium/calcineurin-responsive transcription factor CrzA regulate the expression of cell wall biosynthetic genes during the caspofungin paradoxical effect (CPE). Furthermore, an additional, novel calcium/calcineurin-responsive transcription factor was identified to play a role in cell wall biosynthesis gene expression during the CPE. This work paints a crucial role for calcium metabolism in the CPE and provides further insight into the complex regulation of cell wall biosynthesis, which could ultimately lead to the development of more efficient antifungal therapies.


Cellular Microbiology | 2016

Transcriptomic and molecular genetic analysis of the cell wall salvage response of Aspergillus niger to the absence of galactofuranose synthesis

Joohae Park; Mark Hulsman; Mark Arentshorst; Matthijs Breeman; Ebru Alazi; Ellen L. Lagendijk; Marina Campos Rocha; Iran Malavazi; Benjamin M. Nitsche; Cees A. M. J. J. van den Hondel; Vera Meyer; Arthur F. J. Ram

The biosynthesis of cell surface‐located galactofuranose (Galf)‐containing glycostructures such as galactomannan, N‐glycans and O‐glycans in filamentous fungi is important to secure the integrity of the cell wall. UgmA encodes an UDP‐galactopyranose mutase, which is essential for the formation of Galf. Consequently, the ΔugmA mutant lacks Galf‐containing molecules. Our previous work in Aspergillus niger work suggested that loss of function of ugmA results in activation of the cell wall integrity (CWI) pathway which is characterized by increased expression of the agsA gene, encoding an α‐glucan synthase. In this study, the transcriptional response of the ΔugmA mutant was further linked to the CWI pathway by showing the induced and constitutive phosphorylation of the CWI‐MAP kinase in the ΔugmA mutant. To identify genes involved in cell wall remodelling in response to the absence of galactofuranose biosynthesis, a genome‐wide expression analysis was performed using RNAseq. Over 400 genes were higher expressed in the ΔugmA mutant compared to the wild‐type. These include genes that encode enzymes involved in chitin (gfaB, gnsA, chsA) and α‐glucan synthesis (agsA), and in β‐glucan remodelling (bgxA, gelF and dfgC), and also include several glycosylphosphatidylinositol (GPI)‐anchored cell wall protein‐encoding genes. In silico analysis of the 1‐kb promoter regions of the up‐regulated genes in the ΔugmA mutant indicated overrepresentation of genes with RlmA, MsnA, PacC and SteA‐binding sites. The importance of these transcription factors for survival of the ΔugmA mutant was analysed by constructing the respective double mutants. The ΔugmA/ΔrlmA and ΔugmA/ΔmsnA double mutants showed strong synthetic growth defects, indicating the importance of these transcription factors to maintain cell wall integrity in the absence of Galf biosynthesis.


Scientific Reports | 2018

Analyses of the three 1-Cys Peroxiredoxins from Aspergillus fumigatus reveal that cytosolic Prx1 is central to H2O2 metabolism and virulence

Marina Campos Rocha; Krissia Franco de Godoy; Renata Bannitz-Fernandes; João Henrique Tadini Marilhano Fabri; Mayra M. Ferrari Barbosa; Patricia D. Castro; Fausto Almeida; Gustavo H. Goldman; Anderson F. Cunha; Luis Eduardo Soares Netto; Marcos A. Oliveira; Iran Malavazi

Standing among the front defense strategies against pathogens, host phagocytic cells release various oxidants. Therefore, pathogens have to cope with stressful conditions at the site of infection. Peroxiredoxins (Prx) are highly reactive and abundant peroxidases that can support virulence and persistence of pathogens in distinct hosts. Here, we revealed that the opportunistic human pathogen A. fumigatus presents three 1-Cys Prx (Prx6 subfamily), which is unprecedented. We showed that PrxB and PrxC were in mitochondria, while Prx1 was in cytosol. As observed for other Prxs, recombinant Prx1 and PrxC decomposed H2O2 at elevated velocities (rate constants in the 107 M−1s−1 range). Deletion mutants for each Prx displayed higher sensitivity to oxidative challenge in comparison with the wild-type strain. Additionally, cytosolic Prx1 was important for A. fumigatus survival upon electron transport dysfunction. Expression of Prxs was dependent on the SakAHOG1 MAP kinase and the Yap1YAP1 transcription factor, a global regulator of the oxidative stress response in fungi. Finally, cytosolic Prx1 played a major role in pathogenicity, since it is required for full virulence, using a neutropenic mouse infection model. Our data indicate that the three 1-Cys Prxs act together to maintain the redox balance of A. fumigatus.


Journal of Materials Chemistry B | 2018

Combating pathogens with Cs2.5H0.5PW12O40 nanoparticles: a new proton-regulated antimicrobial agent

Roger H. Piva; Marina Campos Rocha; D.H. Piva; Oscar Rubem Klegues Montedo; Hidetake Imasato; Iran Malavazi; Ubirajara P. Rodrigues-Filho

The transfer of pathogens from contaminated surfaces to patients is one of the main causes of health care-associated infections (HCAIs). Cases of HCAIs due to multidrug-resistant organisms have been growing worldwide, whereas inorganic nano-antimicrobials are valuable today for the prevention and control of HCAIs. Here, we present a cesium salt of phosphotungstic heteropolyacid (Cs2.5H0.5PW12O40) as a promising nanomaterial for use in antimicrobial product technologies. This water-insoluble Keggin salt exhibits a broad biocide spectrum against Gram-positive and Gram-negative bacteria, yeasts, and filamentous fungi even under dark conditions. The Cs2.5H0.5PW12O40 nanoparticles (NPs) act as a proton-regulated antimicrobial whose activity is mediated on the release of hydronium ions (H3O+), yielding an in situ acidic pH several units below those tolerable by most of the fungal and bacterial nosocomial pathogens.


G3: Genes, Genomes, Genetics | 2018

The Aspergillus nidulans Pyruvate Dehydrogenase Kinases Are Essential To Integrate Carbon Source Metabolism

Laure Nicolas Annick Ries; Leandro José de Assis; Fernando Rodrigues; Camila Caldana; Marina Campos Rocha; Iran Malavazi; Özgür Bayram; Gustavo H. Goldman

The pyruvate dehydrogenase complex (PDH), that converts pyruvate to acetyl-coA, is regulated by pyruvate dehydrogenase kinases (PDHK) and phosphatases (PDHP) that have been shown to be important for morphology, pathogenicity and carbon source utilization in different fungal species. The aim of this study was to investigate the role played by the three PDHKs PkpA, PkpB and PkpC in carbon source utilization in the reference filamentous fungus Aspergillus nidulans, in order to unravel regulatory mechanisms which could prove useful for fungal biotechnological and biomedical applications. PkpA and PkpB were shown to be mitochondrial whereas PkpC localized to the mitochondria in a carbon source-dependent manner. Only PkpA was shown to regulate PDH activity. In the presence of glucose, deletion of pkpA and pkpC resulted in reduced glucose utilization, which affected carbon catabolite repression (CCR) and hydrolytic enzyme secretion, due to de-regulated glycolysis and TCA cycle enzyme activities. Furthermore, PkpC was shown to be required for the correct metabolic utilization of cellulose and acetate. PkpC negatively regulated the activity of the glyoxylate cycle enzyme isocitrate lyase (ICL), required for acetate metabolism. In summary, this study identified PDHKs important for the regulation of central carbon metabolism in the presence of different carbon sources, with effects on the secretion of biotechnologically important enzymes and carbon source-related growth. This work demonstrates how central carbon metabolism can affect a variety of fungal traits and lays a basis for further investigation into these characteristics with potential interest for different applications.


ACS Applied Materials & Interfaces | 2018

Acidic Dressing Based on Agarose/Cs2.5H0.5PW12O40 Nanocomposite for Infection Control in Wound Care

Roger H. Piva; Marina Campos Rocha; D.H. Piva; Hidetake Imasato; Iran Malavazi; Ubirajara P. Rodrigues-Filho

Regulation of wound pH from alkaline to acidic is a simple and powerful approach to reduce wound microbial colonization and infection. Here, we present a nanocomposite material possessing intrinsic acidic surface pH as an innovative antimicrobial wound dressing. This material comprises an agarose matrix nanocomposite containing nanoparticles (NPs) of the cesium salt of phosphotungstic heteropolyacid (Cs2.5H0.5PW12O40). Self-supporting films were prepared by a casting method incorporating 5-20 wt % Cs2.5H0.5PW12O40 NPs into the matrix. Films are flexible with tensile strengths between 28.55 and 32.15 MPa and exhibit broad biocidal activity against neutralophilic pathogens, including Gram-positive bacteria, Gram-negative bacteria, yeast, and filamentous fungi. The nano-antimicrobial Cs2.5H0.5PW12O40 functions as an efficient and self-controlled proton delivery agent that lowers the surface pH of the nanocomposites to the range 7.0 > pH ≥ 3.0. Nanocomposite films containing 20 wt % Cs2.5H0.5PW12O40 NPs presented a surface pH of 3.0 and highest antimicrobial activity. Using quantitative reverse transcription polymerase chain reaction, we demonstrated that the antimicrobial mechanism of the nanocomposites is acid-induced because of the transcriptional induction of glutamate-dependent acid resistance genes in Escherichia coli. Additionally, nanocomposite films do not damage skin according to an in vivo rabbit skin model with no derived edema or erythema. The wound care safety of this material is due to low release of heavy metal heteropolyanions ([PW12O40]3-), no nanoparticle leaching, and proton controlled release resulting in nonirritating acid levels for human skin models.

Collaboration


Dive into the Marina Campos Rocha's collaboration.

Top Co-Authors

Avatar

Iran Malavazi

Federal University of São Carlos

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D.H. Piva

Federal University of São Carlos

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Krissia Franco de Godoy

Federal University of São Carlos

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Oscar Rubem Klegues Montedo

Universidade do Extremo Sul Catarinense

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anderson Ferreira da Cunha

Federal University of São Carlos

View shared research outputs
Researchain Logo
Decentralizing Knowledge