Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marina Comelli is active.

Publication


Featured researches published by Marina Comelli.


Molecular Biology of the Cell | 2011

Knock-in reconstitution studies reveal an unexpected role of Cys-65 in regulating APE1/Ref-1 subcellular trafficking and function

Carlo Vascotto; Elena Bisetto; Mengxia Li; Leo Zeef; Chiara D'Ambrosio; Rossana Domenis; Marina Comelli; Daniela Delneri; Andrea Scaloni; Fabio Altieri; Irene Mavelli; Franco Quadrifoglio; Mark R. Kelley; Gianluca Tell

The multifunctional APE1 protein is required for tumor progression and is associated with cancer resistance. It is shown that APE1 presents structural elements that function in distinct cellular roles, highlighting the molecular determinants of the multifunctional nature of this protein and providing the basis for a new role of the C65 residue.


Mitochondrion | 2011

Cardiac differentiation promotes mitochondria development and ameliorates oxidative capacity in H9c2 cardiomyoblasts.

Marina Comelli; Rossana Domenis; Elena Bisetto; Magali Contin; Maurizio Marchini; Fulvia Ortolani; Lara Tomasetig; Irene Mavelli

H9c2 undergoing cardiac differentiation induced by all-trans-retinoic acid were investigated for mitochondria structural features together with the implied functional changes, as a model for the study of mitochondrial development in cardiogenic progenitor cells. As the expression of cardiac markers became detectable, mitochondrial mass increased and mitochondrial morphology and ultrastructure changed. Reticular network organization developed and more bulky mitochondria with greater numbers of closely packed cristae and more electron-dense matrix were detected. Increased expression of PGC-1α proved the occurrence of mitochondrial biogenesis. Improvements in mitochondrial energetic competence were also documented, linked to better assembly between F(0) and F(1) sectors of the F(0)F(1)ATPsynthase enzyme complex.


International Journal of Molecular Sciences | 2012

Glucose-Modulated Mitochondria Adaptation in Tumor Cells: A Focus on ATP Synthase and Inhibitor Factor 1

Rossana Domenis; Elena Bisetto; Davide Rossi; Marina Comelli; Irene Mavelli

Warburg’s hypothesis has been challenged by a number of studies showing that oxidative phosphorylation is repressed in some tumors, rather than being inactive per se. Thus, treatments able to shift energy metabolism by activating mitochondrial pathways have been suggested as an intriguing basis for the optimization of antitumor strategies. In this study, HepG2 hepatocarcinoma cells were cultivated with different metabolic substrates under conditions mimicking “positive” (activation/biogenesis) or “negative” (silencing) mitochondrial adaptation. In addition to the expected up-regulation of mitochondrial biogenesis, glucose deprivation caused an increase in phosphorylating respiration and a rise in the expression levels of the ATP synthase β subunit and Inhibitor Factor 1 (IF1). Hyperglycemia, on the other hand, led to a markedly decreased level of the transcriptional coactivator PGC-α suggesting down-regulation of mitochondrial biogenesis, although no change in mitochondrial mass and no impairment of phosphorylating respiration were observed. Moreover, a reduction in mitochondrial networking and in ATP synthase dimer stability was produced. No effect on β-ATP synthase expression was elicited. Notably, hyperglycemia caused an increase in IF1 expression levels, but it did not alter the amount of IF1 associated with ATP synthase. These results point to a new role of IF1 in relation to high glucose utilization by tumor cells, in addition to its well known effect upon mitochondrial ATP synthase regulation.


Journal of Bioenergetics and Biomembranes | 2011

Mitochondrial bioenergetic profile and responses to metabolic inhibition in human hepatocarcinoma cell lines with distinct differentiation characteristics.

Rossana Domenis; Marina Comelli; Elena Bisetto; Irene Mavelli

The classical view of tumour cell bioenergetics has been recently revised. Then, the definition of the mitochondrial profile is considered of fundamental importance for the development of anti-cancer therapies, but it still needs to be clarified. We investigated two human hepatocellular carcinoma cell lines: the partially differentiated HepG2 and the undifferentiated JHH-6. High resolution respirometry revealed a marked impairment/uncoupling of OXPHOS in JHH-6 compared with HepG2, with the phosphorylation system limiting the capacity for electron transport much more in JHH-6. Blocking glycolysis or mitochondrial ATP synthase we demonstrated that in JHH-6 ATP synthase functions in reverse and consumes glycolytic ATP, thereby sustaining ΔΨm. A higher expression level of ATP synthase Inhibitor Factor 1 (IF1), a higher extent of IF1 bound to ATP synthase and a lower ATPase/synthase capacity were documented in JHH-6. Thus, here IF1 appears to down-regulate the reverse mode of ATPsynthase activity, thereby playing a crucial role in controlling energy waste and ΔΨm. These results, while confirming the over-expression of IF1 in cancer cells, are the first to indicate an inverse link between cell differentiation status and IF1 (expression level and regulatory function).


FEBS Letters | 1994

Differentiation potentiates oxidant injury to mitochondria by hydrogen peroxide in Friend's erythroleukemia cells

Marina Comelli; Giovanna Lippe; Irene Mavelli

Oxidative damage to mitochondrial functions was investigated upon non‐lethal treatment with H2O2 of Friends erythroleukemia cells induced to differentiate, in comparison with the parental cell line. Both respiration and maximal ATP synthase capacity were more severely diminished by H2O2 in induced cells. The effects were mediated by intracellular redox‐active iron and OH. radicals. Specifically, the mechanisms of the selective oxidant injury to F0F1 ATP synthase observed in differentiating cells likely involved impairment of F0—F1 coupling sensitive to oligomycin. We suggest a Fenton‐like reaction of H2O2 with iron ions, more available in the differentiating cells, as occurring at the surface and/or in the lipid bulk phase of the inner mitochondrial membrane, thus injuring subunits responsible for the coupling of F0F1 ATP synthase through generation in situ of the actual damaging species. Besides, we propose heme iron as the most likely candidate for such reaction in induced cells actively synthesizing heme. In accordance, pretreatment of uninduced cells with hemin made H2O2‐damage qualitatively identical.


Biochimica et Biophysica Acta | 2013

Proteomic analysis of F1F0-ATP synthase super-assembly in mitochondria of cardiomyoblasts undergoing differentiation to the cardiac lineage.

Elena Bisetto; Marina Comelli; Anna Maria Salzano; Paola Picotti; Andrea Scaloni; Giovanna Lippe; Irene Mavelli

Mitochondria are essential organelles with multiple functions, especially in energy metabolism. An increasing number of data highlighted their role for cellular differentiation processes. We investigated differences in ATP synthase supra-molecular organization occurring in H9c2 cardiomyoblasts in the course of cardiac-like differentiation, along with ATP synthase biogenesis and maturation of mitochondrial cristae morphology. Using BN-PAGE analysis combined with one-step mild detergent extraction from mitochondria, a significant increase in dimer/monomer ratio was observed, indicating a distinct rise in the stability of the enzyme super-assembly. Remarkably, sub-stoichiometric mean values for ATP synthase subunit e were determined in both parental and cardiac-like H9c2 by an MS-based quantitative proteomics approach. This indicates a similar high proportion of complex molecules lacking subunit e in both cell types, and suggests a minor contribution of this component in the observed changes. 2D BN-PAGE/immunoblotting analysis and MS/MS analysis on single BN-PAGE band showed that the amount of inhibitor protein IF1 bound within the ATP synthase complexes increased in cardiac-like H9c2 and appeared greater in the dimer. In concomitance, a consistent improvement of enzyme activity, measured as both ATP synthesis and ATP hydrolysis rate, was observed, despite the increase of bound IF1 evocative of a greater inhibitory effect on the enzyme ATPase activity. The results suggest i) a role for IF1 in promoting dimer stabilization and super-assembly in H9c2 with physiological IF1 expression levels, likely unveiled by the fact that the contacts through accessory subunit e appear to be partially destabilized, ii) a link between dimer stabilization and enzyme activation.


Journal of Bioenergetics and Biomembranes | 2009

Caspase-independent apoptosis in Friend’s erythroleukemia cells: role of mitochondrial ATP synthesis impairment in relocation of apoptosis-inducing factor and endonuclease G

Marina Comelli; Nadia Genero; Irene Mavelli

Mitochondria have emerged as the central components of both caspase-dependent and independent apoptosis signalling pathways through release of different apoptogenic proteins. We previously documented that parental and differentiated Friend’s erythroleukemia cells were induced to apoptosis by oligomycin and H2O2 exposure, showing that the energy impairment occurring in both cases as a consequence of a severe mitochondrial F0F1ATPsynthase inactivation was a common early feature. Here we provide evidence for AIF and Endo G mitochondrio-nuclear relocation in both cases, as a component of caspase-independent apoptosis pathways. No detectable change in mitochondrial transmembrane potential and no variation in mitochondrial levels of Bcl-2 and Bax are observed. These results point to the osmotic rupture of the mitochondrial outer membrane as occurring in response to cell exposure to the two energy-impairing treatments under conditions preserving the mitochondrial inner membrane. A critical role of the mitochondrial F0F1ATP synthase inhibition in this process is also suggested.


Journal of Bioenergetics and Biomembranes | 2009

Mitochondrial and cell-surface F0F1ATPsynthase in innate and acquired cardioprotection

Giovanna Lippe; Elena Bisetto; Marina Comelli; Stefania Contessi; Francesca Di Pancrazio; Irene Mavelli

Mitochondria are central to heart function and dysfunction, and the pathways activated by different cardioprotective interventions mostly converge on mitochondria. In a context of perspectives in innate and acquired cardioprotection, we review some recent advances in F0F1ATPsynthase structure/function and regulation in cardiac cells. We focus on three topics regarding the mitochondrial F0F1ATPsynthase and the plasma membrane enzyme, i.e.: i) the crucial role of cardiac mitochondrial F0F1ATPsynthase regulation by the inhibitory protein IF1 in heart preconditioning strategies; ii) the structure and function of mitochondrial F0F1ATPsynthase oligomers in mammalian myocardium as possible endogenous factors of mitochondria resistance to ischemic insult; iii) the external location and characterization of plasma membrane F0F1 ATP synthase in search for possible actors of its regulation, such as IF1 and calmodulin, at cell surface.


Journal of Cellular Biochemistry | 2016

F1FO ATP Synthase Is Expressed at the Surface of Embryonic Rat Heart‐Derived H9c2 Cells and Is Affected by Cardiac‐Like Differentiation

Marina Comelli; Rossana Domenis; Alessia Buso; Irene Mavelli

Taking advantage from the peculiar features of the embryonic rat heart‐derived myoblast cell line H9c2, the present study is the first to provide evidence for the expression of F1FO ATP synthase and of ATPase Inhibitory Factor 1 (IF1) on the surface of cells of cardiac origin, together documenting that they were affected through cardiac‐like differentiation. Subunits of both the catalytic F1 sector of the complex (ATP synthase‐β) and of the peripheral stalk, responsible for the correct F1‐FO assembly/coupling, (OSCP, b, F6) were detected by immunofluorescence, together with IF1. The expression of ATP synthase‐β, ATP synthase‐b and F6 were similar for parental and differentiated H9c2, while the levels of OSCP increased noticeably in differentiated cells, where the results of in situ Proximity Ligation Assay were consistent with OSCP interaction within ecto‐F1FO complexes. An opposite trend was shown by IF1 whose ectopic expression appeared greater in the parental H9c2. Here, evidence for the IF1 interaction with ecto‐F1FO complexes was provided. Functional analyses corroborate both sets of data. i) An F1FO ATP synthase contribution to the exATP production by differentiated cells suggests an augmented expression of holo‐F1FO ATP synthase on plasma membrane, in line with the increase of OSCP expression and interaction considered as a requirement for favoring the F1‐FO coupling. ii) The absence of exATP generation by the enzyme, and the finding that exATP hydrolysis was largely oligomycin‐insensitive, are in line in parental cells with the deficit of OSCP and suggest the occurrence of sub‐assemblies together evoking more regulation by IF1. J. Cell. Biochem. 9999: 1–13, 2015.


Cell Cycle | 2016

Transformation by different oncogenes relies on specific metabolic adaptations

Paolo Peruzzo; Marina Comelli; Eros Di Giorgio; Elisa Franforte; Irene Mavelli; Claudio Brancolini

ABSTRACT Metabolic adaptations are emerging as common traits of cancer cells and tumor progression. In vitro transformation of NIH 3T3 cells allows the analysis of the metabolic changes triggered by a single oncogene. In this work, we have compared the metabolic changes induced by H-RAS and by the nuclear resident mutant of histone deacetylase 4 (HDAC4). RAS-transformed cells exhibit a dominant aerobic glycolytic phenotype characterized by up-regulation of glycolytic enzymes, reduced oxygen consumption and a defect in complex I activity. In this model of transformation, glycolysis is strictly required for sustaining the ATP levels and the robust cellular proliferation. By contrast, in HDAC4/TM transformed cells, glycolysis is only modestly up-regulated, lactate secretion is not augmented and, instead, mitochondrial oxygen consumption is increased. Our results demonstrate that cellular transformation can be accomplished through different metabolic adaptations and HDAC4/TM cells can represent a useful model to investigate oncogene-driven metabolic changes besides the Warburg effect.

Collaboration


Dive into the Marina Comelli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge