Marina Coquery
International Atomic Energy Agency
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marina Coquery.
Environmental Pollution | 2009
C. Miège; J.M. Choubert; L. Ribeiro; M. Eusèbe; Marina Coquery
We created a database in order to quantitatively assess the occurrence and removal efficiency of pharmaceuticals and personal care products (PPCPs) in wastewater treatment plants (WWTPs). From 117 scientific publications, we compiled 6641 data covering 184 PPCPs. Data included the concentrations of PPCPs in WWTP influents and effluents, their removal efficiency and their loads to the aquatic environment. The first outputs of our database allowed to identify the most investigated PPCPs in WWTPs and the most persistent ones, and to obtain reliable and quantitative values on their concentrations, frequency of detection and removal efficiency in WWTPs. We were also able to compare various processes and pointed out activated sludge with nitrogen treatment and membrane bioreactor as the most efficient ones.
Science of The Total Environment | 2010
V. Gabet-Giraud; C. Miège; Jean-Marc Choubert; S. Martin Ruel; Marina Coquery
This study aims at evaluating occurrence and treatment efficiency of five estrogenic hormones and ten beta blockers in wastewater treatment plants (WWTP). The use of consistent sampling procedures, analytical techniques and data processing enabled to achieve an accurate comparison of the performances of the different treatment processes. First, the occurrence of molecules was evaluated in fourteen rural and urban WWTP located in France. Free and total estrogens were analyzed showing that more than 84% of estrogens in the dissolved phase of influent samples are in the free form. In effluent samples, comparable mean values but higher variation are underlined (RSD from 13 to 54% depending on the estrogen, compared to 11-21% for influents). Most of the target molecules are quantified in 30 influent and 31 effluent samples. Similar occurrence frequencies are obtained for influents from rural (6 WWTP) and urban areas (8 WWTP), except for betaxolol which is only quantified in urban wastewaters. Removal efficiencies of 8 biological treatments were studied: suspended growth biomass (activated sludge) and attached growth systems (biofilter, rotating biological contactor, reed-bed filter, trickling filter). Biological treatments are efficient to remove estrogens from the dissolved phase, with removal rate around 90%. For beta blockers, acebutolol and nadolol are efficiently removed (mean removal rate of 80%), whereas sotalol and propranolol are hardly impacted by biological treatments (removal rate below 20%). Finally, 9 tertiary treatment processes were evaluated. Ozonation, reverse osmosis and activated carbon filtration prove a high removal efficiency for beta blockers (above 80%). On the contrary, high speed chemical settler, sand filtration, silex filtration, microfiltration and UV present generally removal rates below 30% for all beta blockers. The polishing pond studied presents variable removal performances depending on the molecules (up to 75% for propranolol). The role of the hydraulic retention time on the removal efficiencies is confirmed.
Environmental Pollution | 2010
Marion Rabiet; Christelle Margoum; V. Gouy; Nadia Carluer; Marina Coquery
This study reports on the occurrence and behaviour of six pesticides and one metabolite in a small stream draining a vineyard catchment. Base flow and flood events were monitored in order to assess the variability of pesticide concentrations according to the season and to evaluate the role of sampling frequency on the evaluation of fluxes estimates. Results showed that dissolved pesticide concentrations displayed a strong temporal and spatial variability. A large mobilisation of pesticides was observed during floods, with total dissolved pesticide fluxes per event ranging from 5.7x10(-3) g/Ha to 0.34 g/Ha. These results highlight the major role of floods in the transport of pesticides in this small stream which contributed to more than 89% of the total load of diuron during August 2007. The evaluation of pesticide loads using different sampling strategies and method calculation, showed that grab sampling largely underestimated pesticide concentrations and fluxes transiting through the stream.
Science of The Total Environment | 2013
M. Pomiès; Jean-Marc Choubert; Christelle Wisniewski; Marina Coquery
Modelling the fate of micropollutants through wastewater treatment plants is of present concern. Indeed, such a tool is useful to increase the removal of micropollutants and reduce their release to the environment. In this paper, 18 literature models describing micropollutant removal in activated sludge processes were reviewed. Investigated micropollutants were mainly volatile organic compounds, metals, surfactants, pesticides and pharmaceutical compounds. This work provides a detailed insight about the main mechanisms leading to the micropollutant removal (volatilisation, sorption, biodegradation, cometabolism), the associated mathematical equations and the parameter values found in the literature. A critical analysis was carried out to evaluate the conditions and the domain of validity for which each model was set-up. We also propose (i) an inventory of the experimental methodologies applied to determine the values of model parameters, (ii) a critical study of the main differences between models and (iii) suggestions for a standardisation of calibration methodologies. Finally, this review highlights the lack of explanation concerning the domain of validity of the models and proposes future developments to improve modelling of micropollutant removal in wastewater treatment plants.
Water Science and Technology | 2008
C. Miège; Jean-Marc Choubert; L. Ribeiro; M. Eusèbe; Marina Coquery
We created a database in order to quantitatively assess the occurrence and removal efficiency of PPCPs in WWTPs. From 113 scientific publications, we compiled 5887 data on the concentrations and loads of PPCPs in WWTP influents and effluents, and on their removal efficiency. The first outputs of our database include: (1) a list of the most frequently studied molecules, their frequency of detection, their mean concentration and removal in liquid influent and effluent; (2) a comparison of the removal efficiency for different WWTP processes; (3) a study of the influence of the operating conditions (sludge and hydraulic retention times).
Water Research | 2013
Jean-Philippe Besse; Marina Coquery; Christelle Lopes; Arnaud Chaumot; Hélène Budzinski; Pierre Labadie; Olivier Geffard
We investigated the suitability of an active biomonitoring approach, using the ecologically relevant species Gammarus fossarum, to assess trends of bioavailable contamination in continental waters. Gammarids were translocated into cages at 27 sites, in the Rhône-Alpes region (France) during early autumn 2009. Study sites were chosen to represent different physico-chemical characteristics and various anthropic pressures. Biotic factors such as sex, weight and food availability were controlled in order to provide robust and comparable results. After one week of exposure, concentrations of 11 metals/metalloids (Cd, Pb, Hg, Ni, Zn, Cr, Co, Cu, As, Se and Ag) and 38 hydrophobic organic substances including polycyclic aromatic hydrocarbons (PAHs), polychlorobiphenyles (PCBs), pentabromodiphenylethers (PBDEs) and organochlorine pesticides, were measured in gammarids. All metals except Ag, and 33 organic substances among 38 were quantified in G. fossarum, showing that this species is relevant for chemical biomonitoring. The control of biotic factors allowed a robust and direct inter-site comparison of the bioavailable contamination levels. Overall, our results show the interest and robustness of the proposed methodological approach for assessing trends of bioavailable contamination, notably for metals and hydrophobic organic contaminants, in continental waters. Furthermore, we built threshold values of bioavailable contamination in gammarids, above which measured concentrations are expected to reveal a bioavailable contamination at the sampling site. Two ways to define such values were investigated, a statistical approach and a model fit. Threshold values were determined for almost all the substances investigated in this study and similar values were generally derived from the two approaches. Then, levels of contaminants measured in G. fossarum at the 27 study sites were compared to the threshold values obtained using the model fit. These threshold values could serve as a basis for further implementation of quality grids to rank sites according to the extent of the bioavailable contamination, with regard to the applied methodology.
Talanta | 2013
Nicolas Morin; Julien Camilleri; Cécile Cren-Olivé; Marina Coquery; Cécile Miège
The literature increasingly reports sampling rates (Rs) for Polar Organic Chemical Integrative Samplers (POCIS) but the data obtained come from various calibration systems that are not always well-defined (agitation, temperature, measured micropollutant concentrations in water,…). In order to obtain accurate laboratory Rs for priority and emerging substances, POCIS need to be exposed in a robust and well-defined calibration system. Thus, we built a flow-through calibration system containing tap water spiked with 56 organic micropollutants (alkylphenols and phenols, hormones, pesticides, pharmaceuticals, UV filter). POCIS were immersed for up to 28 days. Tap water micropollutant concentrations and additional parameters (temperature, pH, conductivity, dissolved organic carbon, flow velocities) were kept constant and controlled throughout the calibration experiment. Based on the observed uptake kinetics, we distinguished four types of micropollutant accumulation patterns: curvilinear accumulation (30 molecules, group 1), accumulation with an inflexion point (13 molecules, group 2), random accumulation (eight molecules, group 3), and no or very low accumulation (five molecules, group 4). Rs was calculated for 43 out of 56 micropollutants (groups 1 and 2). Calculated Rs values ranged from 0.030 L/d to 0.398 L/d. POCIS can supply TWA concentrations for hormones, pesticides, several pharmaceuticals, a few alkylphenols, and the UV filter. Our Rs results are generally less than two fold-different (higher or lower depending on target molecule) to the literature data using the same type of calibration system or for micropollutants with log Kow>2.65. We found a quadratic correlation between Rs and log D for betablockers, herbicides and hormones.
Talanta | 2013
Christelle Margoum; Céline Guillemain; Xi Yang; Marina Coquery
Stir bar sorptive extraction followed by liquid desorption and high performance liquid chromatography with tandem mass spectrometry (SBSE-LD-LC-MSMS) has been developed for the determination of 15 pesticides or selected metabolites from different families (herbicides, insecticides, fungicides) in surface water samples. The optimization of parameters that could influence SBSE-LD efficiency was carried out by means of experimental design. Optimized conditions were established as follows concerning extraction time, stirring speed, aqueous medium characteristics (ionic strength and polarity) and back desorption solvent and time, respectively: 3 h (800 rpm), addition of 10% of sodium chloride, no addition of methanol as organic modifier, and 15 min ultrasonic desorption in equivolume mixtures of acetonitrile-methanol. A specific and thorough cleanup procedure was developed and applied to each stir bar to avoid possible carry-over between consecutive extractions with the same stir bar. Pesticide quantification in water was achieved thanks to matrix matched calibration. Mean recoveries ranged from 93 to 101% (RSD <17%, n=30). Validated limits of quantification in matrix were between 0.02 and 1 µg L(-1), depending on the compound. A specific experimental design was conducted to evaluate the measurement uncertainty, which was comprised between 13 and 51%, whatever the pesticide and the concentration level. The applicability of the SBSE-LD-LCMSMS method was evaluated by analyzing surface water samples and by comparing with conventional solid phase extraction-LC-MSMS procedure.
Water Science and Technology | 2010
S. Martin Ruel; M. Esperanza; Jean-Marc Choubert; I. Valor; Hélène Budzinski; Marina Coquery
The next challenge of wastewater treatment is to reliably remove micropollutants at the microgram per litre range in order to reduce the discharge for priority substances and to meet the environmental quality standards set by the European Water Framework Directive. The present work assessed the occurrence of 60 organic substances (priority substances and other relevant pollutants) in municipal wastewater and sludge. Their fate in the treatment processes and their removal efficiencies were quantified. Thorough on-site mass balances were carried out at 8 municipal wastewater treatment plants chosen among conventional and advanced secondary processes. It was found that 70% of the substances were quantified in raw wastewater and 50% in effluent, with a transfer without a limited degradation for most of them. Low loaded activated sludge (AS) process reduced the emission of more than half of micropollutants. At low sludge retention time (AS under high load), lower removal efficiencies were measured compared to low loaded AS. No influence of temperature of the biological reactor was shown. The membrane bioreactor process increased the removal efficiencies for one third of the substances that were partially removed with AS. Still, five substances were measured at concentrations exceeding the environmental quality standards at the outlet of the studied plants. In addition to efforts for source-reduction, complementary treatments need to be set-up.
Water Science and Technology | 2012
S. Martin Ruel; Jean-Marc Choubert; Hélène Budzinski; C. Miège; M. Esperanza; Marina Coquery
The next challenge of wastewater treatment is to reliably remove micropollutants at the microgram per litre range. During the present work more than 100 substances were analysed through on-site mass balances over 19 municipal wastewater treatment lines. The most relevant substances according to their occurrence in raw wastewater, in treated wastewater and in sludge were identified, and their fate in wastewater treatment processes was assessed. About half of priority substances of WFD were found at concentrations higher than 0.1 μg/L in wastewater. For 26 substances, potential non-compliance with Environmental Quality Standard of Water Framework Directive has been identified in treated wastewater, depending on river flow. Main concerns are for Cd, DEHP, diuron, alkylphenols, and chloroform. Emerging substances of particular concern are by-products, organic chemicals (e.g. triclosan, benzothiazole) and pharmaceuticals (e.g. ketoprofen, diclofenac, sulfamethoxazole, carbamazepine). About 80% of the load of micropollutants was removed by conventional activated sludge plants, but about two-thirds of removed substances were mainly transferred to sludge.