Marina Kennerson
University of Sydney
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marina Kennerson.
American Journal of Human Genetics | 2004
Ying Zhang Chen; Craig L. Bennett; Huy M. Huynh; Ian P. Blair; Imke Puls; Joy Irobi; Ines Dierick; Annette Abel; Marina Kennerson; Bruce A. Rabin; Garth A. Nicholson; Michaela Auer-Grumbach; Klaus Wagner; John W. Griffin; Kenneth H. Fischbeck; Vincent Timmerman; David R. Cornblath; Phillip F. Chance
Juvenile amyotrophic lateral sclerosis (ALS4) is a rare autosomal dominant form of juvenile amyotrophic lateral sclerosis (ALS) characterized by distal muscle weakness and atrophy, normal sensation, and pyramidal signs. Individuals affected with ALS4 usually have an onset of symptoms at age <25 years, a slow rate of progression, and a normal life span. The ALS4 locus maps to a 1.7-Mb interval on chromosome 9q34 flanked by D9S64 and D9S1198. To identify the molecular basis of ALS4, we tested 19 genes within the ALS4 interval and detected missense mutations (T3I, L389S, and R2136H) in the Senataxin gene (SETX). The SETX gene encodes a novel 302.8-kD protein. Although its function remains unknown, SETX contains a DNA/RNA helicase domain with strong homology to human RENT1 and IGHMBP2, two genes encoding proteins known to have roles in RNA processing. These observations of ALS4 suggest that mutations in SETX may cause neuronal degeneration through dysfunction of the helicase activity or other steps in RNA processing.
American Journal of Human Genetics | 2010
Marina Kennerson; Garth A. Nicholson; Stephen G. Kaler; Bartosz Kowalski; Julian F. B. Mercer; Jingrong Tang; Roxana M. Llanos; Shannon Chu; Reinaldo I. Takata; Carlos Eduardo Speck-Martins; Jonathan Baets; Leonardo Almeida-Souza; Dirk Fischer; Vincent Timmerman; Philip E. Taylor; Steven S. Scherer; Toby A. Ferguson; Bird Td; Shawna Feely; Michael E. Shy; James Garbern
Distal hereditary motor neuropathies comprise a clinically and genetically heterogeneous group of disorders. We recently mapped an X-linked form of this condition to chromosome Xq13.1-q21 in two large unrelated families. The region of genetic linkage included ATP7A, which encodes a copper-transporting P-type ATPase mutated in patients with Menkes disease, a severe infantile-onset neurodegenerative condition. We identified two unique ATP7A missense mutations (p.P1386S and p.T994I) in males with distal motor neuropathy in two families. These molecular alterations impact highly conserved amino acids in the carboxyl half of ATP7A and do not directly involve the copper transporters known critical functional domains. Studies of p.P1386S revealed normal ATP7A mRNA and protein levels, a defect in ATP7A trafficking, and partial rescue of a S. cerevisiae copper transport knockout. Although ATP7A mutations are typically associated with severe Menkes disease or its milder allelic variant, occipital horn syndrome, we demonstrate here that certain missense mutations at this locus can cause a syndrome restricted to progressive distal motor neuropathy without overt signs of systemic copper deficiency. This previously unrecognized genotype-phenotype correlation suggests an important role of the ATP7A copper transporter in motor-neuron maintenance and function.
Journal of the American College of Cardiology | 2010
Christine L Chiu; Richard D. Bagnall; Jodie Ingles; Laura Yeates; Marina Kennerson; Jennifer A. Donald; Mika Jormakka; Joanne M. Lind; Christopher Semsarian
OBJECTIVES This study describes a genome-wide linkage analysis of a large family with clinically heterogeneous hypertrophic cardiomyopathy (HCM). BACKGROUND Familial HCM is a disorder characterized by genetic heterogeneity. In as many as 50% of HCM cases, the genetic cause remains unknown, suggesting that other genes may be involved. METHODS Clinical evaluation, including clinical history, physical examination, electrocardiography, and 2-dimensional echocardiography, was performed, and blood was collected from family members (n = 23) for deoxyribonucleic acid analysis. The family was genotyped with markers from the 10-cM AB PRISM Human Linkage mapping set (Applied Biosystems, Foster City, California), and 2-point linkage analysis was performed. RESULTS Affected family members showed marked clinical diversity, ranging from asymptomatic individuals to those with syncope, heart failure, and premature sudden death. The disease locus for this family was mapped to chromosome 1q42.2-q43, near the marker D1S2850 (logarithm of odds ratio = 2.82, theta = 0). A missense mutation, Ala119Thr, in the alpha-actinin-2 (ACTN2) gene was identified that segregated with disease in the family. An additional 297 HCM probands were screened for mutations in the ACTN2 gene using high-resolution melt analysis. Three causative ACTN2 mutations, Thr495Met, Glu583Ala, and Glu628Gly, were identified in an additional 4 families (total 1.7%) with HCM. CONCLUSIONS This is the first genome-wide linkage analysis that shows mutations in ACTN2 cause HCM. Mutations in genes encoding Z-disk proteins account for a small but significant proportion of genotyped HCM families.
Neurology | 2005
D. Zhu; Marina Kennerson; Gina Walizada; Stephan Züchner; J. M. Vance; Garth A. Nicholson
Charcot–Marie–Tooth neuropathy (CMT) is divided into two broad categories: demyelinating forms (CMT1), characterized by median motor conduction velocities of <38 m/s; and axonal forms (CMT2), characterized by axonal degeneration without demyelination and preserved or only mildly reduced motor conduction velocities.1 CMT with pyramidal features is an axonal form of CMT with variable pyramidal features (upper motor neuron signs) but without frank spasticity. The dominantly inherited form was classified as hereditary motor and sensory neuropathy type V (HMSN V [MIM 600361])2 and also defined as peroneal muscular atrophy with pyramidal features.3 The pyramidal signs include extensor plantar responses, mild increase in tone, flexor plantar weakness, and preserved or increased reflexes (knee and ankle). There is no frank spasticity differentiating this disorder from the spastic paraplegias. The disorder has not been mapped to a chromosomal locus. Eight loci have been reported for the autosomal dominant forms of CMT2. Genes with mutations have been identified for five of these loci. Recently, two closely mapped genes, MFN2 (MIM 608507) and KIF1B (MIM 6059950), were reported to cause CMT2A4,5, but mutations in KIF1B have not been independently …
Neuromuscular Disorders | 2010
Rachel D. Susman; Susana Quijano-Roy; Nan Yang; Richard Webster; Nigel F. Clarke; Jim Dowling; Marina Kennerson; Garth A. Nicholson; Valérie Biancalana; Biljana Ilkovski; Kevin M. Flanigan; Susan Arbuckle; Chandra S. Malladi; Phillip J. Robinson; Steven Vucic; Michèle Mayer; Norma B. Romero; Jon Andoni Urtizberea; Federico García-Bragado; Pascale Guicheney; Marc Bitoun; Robert-Yves Carlier; Kathryn N. North
Mutations in dynamin-2 (DNM2) cause autosomal dominant centronuclear myopathy (CNM). We report a series of 12 patients from eight families with CNM in whom we have identified a number of novel features that expand the reported clinicopathological phenotype. We identified two novel and five recurrent missense mutations in DNM2. Early clues to the diagnosis include relative weakness of neck flexors, external ophthalmoplegia and ptosis, although these are not present in all patients. Pes cavus was present in two patients, and in another two members of one family there was mild slowing of nerve conduction velocities. Whole-body MRI examination in two children and one adult revealed a similar pattern of involvement of selective muscles in head (lateral pterygoids), neck (extensors), trunk (paraspinal) and upper limbs (deep muscles of forearm). Findings in lower limbs and pelvic region were similar to that previously reported in adults with DNM2 mutations. Two patients presented with dystrophic changes as the predominant pathological feature on muscle biopsies; one of whom had a moderately raised creatine kinase, and both patients were initially diagnosed as congenital muscular dystrophy. DNM2 mutation analysis should be considered in patients with a suggestive clinical phenotype despite atypical histopathology, and MRI findings can be used to guide genetic testing. Subtle neuropathic features in some patients suggest an overlap with the DNM2 neuropathy phenotype. Missense mutations in the C-terminal region of the PH domain appear to be associated with a more severe clinical phenotype evident from infancy.
American Journal of Human Genetics | 2012
Carlo Rinaldi; Christopher Grunseich; Irina F. Sevrioukova; Alice B. Schindler; Iren Horkayne-Szakaly; Costanza Lamperti; Guida Landouré; Marina Kennerson; Barrington G. Burnett; Carsten G. Bönnemann; Leslie G. Biesecker; Daniele Ghezzi; Massimo Zeviani; Kenneth H. Fischbeck
Cowchock syndrome (CMTX4) is a slowly progressive X-linked recessive disorder with axonal neuropathy, deafness, and cognitive impairment. The disease locus was previously mapped to an 11 cM region at chromosome X: q24-q26. Exome sequencing of an affected individual from the originally described family identified a missense change c.1478A>T (p.Glu493Val) in AIFM1, the gene encoding apoptosis-inducing factor (AIF) mitochondrion-associated 1. The change is at a highly conserved residue and cosegregated with the phenotype in the family. AIF is an FAD-dependent NADH oxidase that is imported into mitochondria. With apoptotic insults, a N-terminal transmembrane linker is cleaved off, producing a soluble fragment that is released into the cytosol and then transported into the nucleus, where it triggers caspase-independent apoptosis. Another AIFM1 mutation that predicts p.Arg201del has recently been associated with severe mitochondrial encephalomyopathy in two infants by impairing oxidative phosphorylation. The c.1478A>T (p.Glu493Val) mutation found in the family reported here alters the redox properties of the AIF protein and results in increased cell death via apoptosis, without affecting the activity of the respiratory chain complexes. Our findings expand the spectrum of AIF-related disease and provide insight into the effects of AIFM1 mutations.
Neurology | 2001
Elsdon Storey; R. J. M. Gardner; Melanie A. Knight; Marina Kennerson; R. R. Tuck; Susan M. Forrest; Garth A. Nicholson
A kindred is described with a dominantly inherited “pure” cerebellar ataxia in which the currently known spinocerebellar ataxias have been excluded. In the eight subjects studied, a notable clinical feature is slow progression, with the three least affected having only a mild degree of gait ataxia after three or more decades of disease duration. Pending an actual chromosomal locus discovery, the name spinocerebellar ataxia (SCA)15 is expectantly applied.
American Journal of Human Genetics | 2003
Cindy Kok; Marina Kennerson; P.J. Spring; Alvin Ing; John D. Pollard; Garth A. Nicholson
Hereditary sensory neuropathy type I (HSN I) is a group of dominantly inherited degenerative disorders of peripheral nerve in which sensory features are more prominent than motor involvement. We have described a new form of HSN I that is associated with cough and gastroesophageal reflux. To map the chromosomal location of the gene causing the disorder, a 10-cM genome screen was undertaken in a large Australian family. Two-point analysis showed linkage to chromosome 3p22-p24 (Zmax=3.51 at recombination fraction (theta) 0.0 for marker D3S2338). A second family with a similar phenotype shares a different disease haplotype but segregates at the same locus. Extended haplotype analysis has refined the region to a 3.42-cM interval, flanked by markers D3S2336 and D3S1266.
Brain | 2009
Kristl G. Claeys; Stephan Züchner; Marina Kennerson; José Berciano; Antonio García; Kristien Verhoeven; Elsdon Storey; John Merory; Henriette M. E. Bienfait; Martin Lammens; Eva Nelis; Jonathan Baets; Els De Vriendt; Zwi N. Berneman; Ilse De Veuster; Jefferey M. Vance; Garth A. Nicholson; Vincent Timmerman
Dominant intermediate Charcot-Marie-Tooth neuropathy type B is caused by mutations in dynamin 2. We studied the clinical, haematological, electrophysiological and sural nerve biopsy findings in 34 patients belonging to six unrelated dominant intermediate Charcot-Marie-Tooth neuropathy type B families in whom a dynamin 2 mutation had been identified: Gly358Arg (Spain); Asp551_Glu553del; Lys550fs (North America); Lys558del (Belgium); Lys558Glu (Australia, the Netherlands) and Thr855_Ile856del (Belgium). The Gly358Arg and Thr855_Ile856del mutations were novel, and in contrast to the other Charcot-Marie-Tooth-related mutations in dynamin 2, which are all located in the pleckstrin homology domain, they were situated in the middle domain and proline-rich domain of dynamin 2, respectively. We report the first disease-causing mutation in the proline-rich domain of dynamin 2. Patients with a dynamin 2 mutation presented with a classical Charcot-Marie-Tooth phenotype, which was mild to moderately severe since only 3% of the patients were wheelchair-bound. The mean age at onset was 16 years with a large variability ranging from 2 to 50 years. Interestingly, in the Australian and Belgian families, which carry two different mutations affecting the same amino acid (Lys558), Charcot-Marie-Tooth cosegregated with neutropaenia. In addition, early onset cataracts were observed in one of the Charcot-Marie-Tooth families. Our electrophysiological data indicate intermediate or axonal motor median nerve conduction velocities (NCV) ranging from 26 m/s to normal values in four families, and less pronounced reduction of motor median NCV (41-46 m/s) with normal amplitudes in two families. Sural nerve biopsy in a Dutch patient with Lys558Glu mutation showed diffuse loss of large myelinated fibres, presence of many clusters of regenerating myelinated axons and fibres with focal myelin thickenings--findings very similar to those previously reported in the Australian family. We conclude that dynamin 2 mutations should be screened in the autosomal dominant Charcot-Marie-Tooth neuropathy families with intermediate or axonal NCV, and in patients with a classical mild to moderately severe Charcot-Marie-Tooth phenotype, especially when Charcot-Marie-Tooth is associated with neutropaenia or cataracts.
Neurobiology of Disease | 2003
Melanie A. Knight; Marina Kennerson; Richard Anney; Tohru Matsuura; Garth A. Nicholson; Peyman Salimi-Tari; R.J. McKinlay Gardner; Elsdon Storey; Susan M. Forrest
We have studied a large Australian kindred with a dominantly inherited pure cerebellar ataxia, SCA15. The disease is characterised by a very slow rate of progression in some family members, and atrophy predominantly of the superior vermis, and to a lesser extent the cerebellar hemispheres. Repeat expansion detection failed to identify either a CAG/CTG or ATTCT/AGAAT repeat expansions segregating with the disease in this family. A genome-wide scan revealed significant evidence for linkage to the short arm of chromosome 3. The highest two-point LOD score was obtained with D3S3706 (Z = 3.4, theta = 0.0). Haplotype analysis identified recombinants that placed the SCA15 locus within an 11.6-cM region flanked by the markers D3S3630 and D3S1304. The mouse syntenic region contains two ataxic mutants, itpr1-/- and opt, affecting the inositol 1,4,5-triphosphate type 1 receptor, ITPR1 gene. ITPR1 is predominantly expressed in the cerebellar Purkinje cells. Mutation analysis from two representative affected family members excluded the coding region of the ITPR1 gene from being involved in the pathogenesis of SCA15. Thus, the itpr1-/- and opt ITPR1 mouse mutants, which each result in ataxia, are not allelic to the human SCA15 locus.