Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marina Mazur is active.

Publication


Featured researches published by Marina Mazur.


Journal of Biological Chemistry | 2004

Efficient Intracellular Processing of the Endogenous Cystic Fibrosis Transmembrane Conductance Regulator in Epithelial Cell Lines

Karoly Varga; Asta Jurkuvenaite; John K. Wakefield; Jeong S. Hong; Jennifer S. Guimbellot; Charles J. Venglarik; Ashutosh Niraj; Marina Mazur; Eric J. Sorscher; James F. Collawn; Zsuzsa Bebok

The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-dependent protein kinase A-activated chloride channel that resides on the apical surface of epithelial cells. One unusual feature of this protein is that during biogenesis, ∼75% of wild type CFTR is degraded by the endoplasmic reticulum (ER)-associated degradative (ERAD) pathway. Examining the biogenesis and structural instability of the molecule has been technically challenging due to the limited amount of CFTR expressed in epithelia. Consequently, investigators have employed heterologous overexpression systems. Based on recent results that epithelial specific factors regulate both CFTR biogenesis and function, we hypothesized that CFTR biogenesis in endogenous CFTR expressing epithelial cells may be more efficient. To test this, we compared CFTR biogenesis in two epithelial cell lines endogenously expressing CFTR (Calu-3 and T84) with two heterologous expression systems (COS-7 and HeLa). Consistent with previous reports, 20 and 35% of the newly synthesized CFTR were converted to maturely glycosylated CFTR in COS-7 and HeLa cells, respectively. In contrast, CFTR maturation was virtually 100% efficient in Calu-3 and T84 cells. Furthermore, inhibition of the proteasome had no effect on CFTR biogenesis in Calu-3 cells, whereas it stabilized the immature form of CFTR in HeLa cells. Quantitative reverse transcriptase-PCR indicated that CFTR message levels are ∼4-fold lower in Calu-3 than HeLa cells, yet steady-state protein levels are comparable. Our results question the structural instability model of wild type CFTR and indicate that epithelial cells endogenously expressing CFTR efficiently process this protein to post-Golgi compartments.


PLOS ONE | 2012

A Pharmacologic Approach to Acquired Cystic Fibrosis Transmembrane Conductance Regulator Dysfunction in Smoking Related Lung Disease

Peter A. Sloane; Suresh Shastry; Andrew M. Wilhelm; Clifford Courville; Li Ping Tang; Kyle Backer; Elina Levin; S. Vamsee Raju; Yao Li; Marina Mazur; Suzanne Byan-Parker; William E. Grizzle; Eric J. Sorscher; Mark T. Dransfield; Steven M. Rowe

Background Mucus stasis in chronic obstructive pulmonary disease (COPD) is a significant contributor to morbidity and mortality. Potentiators of cystic fibrosis transmembrane conductance regulator (CFTR) activity pharmacologically enhance CFTR function; ivacaftor is one such agent approved to treat CF patients with the G551D-CFTR gating mutation. CFTR potentiators may also be useful for other diseases of mucus stasis, including COPD. Methods and Findings In primary human bronchial epithelial cells, exposure to cigarette smoke extract diminished CFTR-mediated anion transport (65.8±0.2% of control, P<0.005) and mucociliary transport (0.17±0.05 µm/sec vs. 2.4±0.47 µm/sec control, P<0.05) by reducing airway surface liquid depth (7.3±0.6 µm vs. 13.0±0.6 µm control, P<0.005) and augmenting mucus expression (by 64%, P<0.05) without altering transepithelial resistance. Smokers with or without COPD had reduced CFTR activity measured by nasal potential difference compared to age-matched non-smokers (−6.3±1.4 and −8.0±2.0 mV, respectively vs. −15.2±2.7 mV control, each P<0.005, n = 12–14/group); this CFTR decrement was associated with symptoms of chronic bronchitis as measured by the Breathlessness Cough and Sputum Score (r = 0.30, P<0.05) despite controlling for smoking (r = 0.31, P<0.05). Ivacaftor activated CFTR-dependent chloride transport in non-CF epithelia and ameliorated the functional CFTR defect induced by smoke to 185±36% of non-CF control (P<0.05), thereby increasing airway surface liquid (from 7.3±0.6 µm to 10.1±0.4 µm, P<0.005) and mucociliary transport (from 0.27±0.11 µm/s to 2.7±0.28 µm/s, P<0.005). Conclusions Cigarette smoking reduces CFTR activity and is causally related to reduced mucus transport in smokers due to inhibition of CFTR dependent fluid transport. These effects are reversible by the CFTR potentiator ivacaftor, representing a potential therapeutic strategy to augment mucociliary clearance in patients with smoking related lung disease.


PLOS ONE | 2013

Method for Quantitative Study of Airway Functional Microanatomy Using Micro-Optical Coherence Tomography

Linbo Liu; Kengyeh K. Chu; Grace H. Houser; Bradford Diephuis; Yao Li; Eric J. Wilsterman; Suresh Shastry; Gregory Dierksen; Susan E. Birket; Marina Mazur; Suzanne Byan-Parker; William E. Grizzle; Eric J. Sorscher; Steven M. Rowe; Guillermo J. Tearney

We demonstrate the use of a high resolution form of optical coherence tomography, termed micro-OCT (μOCT), for investigating the functional microanatomy of airway epithelia. μOCT captures several key parameters governing the function of the airway surface (airway surface liquid depth, periciliary liquid depth, ciliary function including beat frequency, and mucociliary transport rate) from the same series of images and without exogenous particles or labels, enabling non-invasive study of dynamic phenomena. Additionally, the high resolution of μOCT reveals distinguishable phases of the ciliary stroke pattern and glandular extrusion. Images and functional measurements from primary human bronchial epithelial cell cultures and excised tissue are presented and compared with measurements using existing gold standard methods. Active secretion from mucus glands in tissue, a key parameter of epithelial function, was also observed and quantified.


American Journal of Respiratory Cell and Molecular Biology | 2008

Activation of the Unfolded Protein Response by ΔF508 CFTR

Rafal Bartoszewski; Andras Rab; Asta Jurkuvenaite; Marina Mazur; John K. Wakefield; James F. Collawn; Zsuzsa Bebok

Environmental insults and misfolded proteins cause endoplasmic reticulum (ER) stress and activate the unfolded protein response (UPR). The UPR decreases endogenous cystic fibrosis transmembrane conductance regulator (CFTR) mRNA levels and protein maturation efficiency. Herein, we investigated the effects of the folding-deficient deltaF508 CFTR on ER stress induction and UPR activation. For these studies, we developed and characterized stable clones of Calu3deltaF cells that express different levels of endogenous wild-type (WT) and recombinant deltaF508 CFTR. We also present a novel RT-PCR-based assay for differential quantification of wild-type CFTR mRNA in the presence of deltaF508 CFTR message. The assay is based on a TaqMan minor groove binding (MGB) probe that recognizes a specific TTT sequence (encoding phenylalanine at position 508 in human CFTR). The MGB probe is extremely specific and sensitive to changes in WT CFTR message levels. In RNA samples that contain both WT and deltaF508 CFTR mRNAs, measurement of WT CFTR mRNA levels (using the MGB probe) and total CFTR mRNA (using commercial primers) allowed us to calculate deltaF508 CFTR mRNA levels. The results indicate that overexpression of deltaF508 CFTR causes ER stress and activates the UPR. UPR activation precedes a marked decrease in endogenous WT CFTR mRNA expression. Furthermore, polarized airway epithelial cell lines are important tools in cystic fibrosis research, and herein we provide an airway epithelial model to study the biogenesis and function of WT and deltaF508 CFTR expressed within the same cell.


American Journal of Respiratory and Critical Care Medicine | 2014

A Functional Anatomic Defect of the Cystic Fibrosis Airway

Susan E. Birket; Kengyeh K. Chu; Linbo Liu; Grace H. Houser; Bradford Diephuis; Eric J. Wilsterman; Gregory Dierksen; Marina Mazur; Suresh Shastry; Yao Li; John D. Watson; Alexander T. Smith; Benjamin S. Schuster; Justin Hanes; William E. Grizzle; Eric J. Sorscher; Guillermo J. Tearney; Steven M. Rowe

RATIONALE The mechanisms underlying cystic fibrosis (CF) lung disease pathogenesis are unknown. OBJECTIVES To establish mechanisms linking anion transport with the functional microanatomy, we evaluated normal and CF piglet trachea as well as adult swine trachea in the presence of selective anion inhibitors. METHODS We investigated airway functional microanatomy using microoptical coherence tomography, a new imaging modality that concurrently quantifies multiple functional parameters of airway epithelium in a colocalized fashion. MEASUREMENTS AND MAIN RESULTS Tracheal explants from wild-type swine demonstrated a direct link between periciliary liquid (PCL) hydration and mucociliary transport (MCT) rates, a relationship frequently invoked but never experimentally confirmed. However, in CF airways this relationship was completely disrupted, with greater PCL depths associated with slowest transport rates. This disrupted relationship was recapitulated by selectively inhibiting bicarbonate transport in vitro and ex vivo. CF mucus exhibited increased viscosity in situ due to the absence of bicarbonate transport, explaining defective MCT that occurs even in the presence of adequate PCL hydration. CONCLUSIONS An inherent defect in CF airway surface liquid contributes to delayed MCT beyond that caused by airway dehydration alone and identifies a fundamental mechanism underlying the pathogenesis of CF lung disease in the absence of antecedent infection or inflammation.


Pulmonary Pharmacology & Therapeutics | 2010

ΔF508 CFTR processing correction and activity in polarized airway and non-airway cell monolayers

Steven M. Rowe; Louise C. Pyle; A. Jurkevante; Karoly Varga; James F. Collawn; Peter A. Sloane; B. Woodworth; Marina Mazur; Jennifer C. Fulton; Lijuan Fan; Yao Li; J. Fortenberry; Eric J. Sorscher; John P. Clancy

We examined the activity of DeltaF508 cystic fibrosis transmembrane conductance regulator (CFTR) stably expressed in polarized cystic fibrosis bronchial epithelial cells (CFBE41o(-)) human airway cells and Fisher Rat Thyroid (FRT) cells following treatment with low temperature and a panel of small molecule correctors of DeltaF508 CFTR misprocessing. Corr-4a increased DeltaF508 CFTR-dependent Cl(-) conductance in both cell types, whereas treatment with VRT-325 or VRT-640 increased activity only in FRT cells. Total currents stimulated by forskolin and genistein demonstrated similar dose/response effects to Corr-4a treatment in each cell type. When examining the relative contribution of forskolin and genistein to total stimulated current, CFBE41o(-) cells had smaller forskolin-stimulated I(sc) following either low temperature or corr-4a treatment (10-30% of the total I(sc) produced by the combination of both CFTR agonists). In contrast, forskolin consistently contributed greater than 40% of total I(sc) in DeltaF508 CFTR-expressing FRT cells corrected with low temperature, and corr-4a treatment preferentially enhanced forskolin dependent currents only in FRT cells (60% of total I(sc)). DeltaF508 CFTR cDNA transcript levels, DeltaF508 CFTR C band levels, or cAMP signaling did not account for the reduced forskolin response in CFBE41o(-) cells. Treatment with non-specific inhibitors of phosphodiesterases (papaverine) or phosphatases (endothall) did not restore DeltaF508 CFTR activation by forskolin in CFBE41o(-) cells, indicating that the Cl(-) transport defect in airway cells is distal to cAMP or its metabolism. The results identify important differences in DeltaF508 CFTR activation in polarizing epithelial models of CF, and have important implications regarding detection of rescued of DeltaF508 CFTR in vivo.


Journal of Molecular Medicine | 2011

Suppression of CFTR premature termination codons and rescue of CFTR protein and function by the synthetic aminoglycoside NB54

Steven M. Rowe; Peter A. Sloane; Li Ping Tang; Kyle Backer; Marina Mazur; Jessica Buckley-Lanier; Igor Nudelman; Valery Belakhov; Zsuzsa Bebok; Erik M. Schwiebert; Timor Baasov; David M. Bedwell

Certain aminoglycosides are capable of inducing “translational readthrough” of premature termination codons (PTCs). However, toxicity and relative lack of efficacy deter treatment with clinically available aminoglycosides for genetic diseases caused by PTCs, including cystic fibrosis (CF). Using a structure-based approach, the novel aminoglycoside NB54 was developed that exhibits reduced toxicity and enhanced suppression of PTCs in cell-based reporter assays relative to gentamicin. We examined whether NB54 administration rescued CFTR protein and function in clinically relevant CF models. In a fluorescence-based halide efflux assay, NB54 partially restored halide efflux in a CF bronchial epithelial cell line (CFTR genotype W1282X/F508del), but not in a CF epithelial cell line lacking a PTC (F508del/F508del). In polarized airway epithelial cells expressing either a CFTR-W1282X or -G542X cDNA, treatment with NB54 increased stimulated short-circuit current (ISC) with greater efficiency than gentamicin. NB54 and gentamicin induced comparable increases in forskolin-stimulated ISC in primary airway epithelial cells derived from a G542X/F508del CF donor. Systemic administration of NB54 to Cftr−/− mice expressing a human CFTR-G542X transgene restored 15–17% of the average stimulated transepithelial chloride currents observed in wild-type (Cftr+/+) mice, comparable to gentamicin. NB54 exhibited reduced cellular toxicity in vitro and was tolerated at higher concentrations than gentamicin in vivo. These results provide evidence that synthetic aminoglycosides are capable of PTC suppression in relevant human CF cells and a CF animal model and support further development of these compounds as a treatment modality for genetic diseases caused by PTCs.


American Journal of Respiratory Cell and Molecular Biology | 2014

Cystic Fibrosis Transmembrane Conductance Regulator Activation by Roflumilast Contributes to Therapeutic Benefit in Chronic Bronchitis

James A. Lambert; S. Vamsee Raju; Li Ping Tang; Carmel M. McNicholas; Yao Li; Clifford Courville; Roopan F. Farris; George E. Coricor; Lisa Smoot; Marina Mazur; Mark T. Dransfield; Graeme B. Bolger; Steven M. Rowe

Cigarette smoking causes acquired cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction and is associated with delayed mucociliary clearance and chronic bronchitis. Roflumilast is a clinically approved phosphodiesterase 4 inhibitor that improves lung function in patients with chronic bronchitis. We hypothesized that its therapeutic benefit was related in part to activation of CFTR. Primary human bronchial epithelial (HBE) cells, Calu-3, and T84 monolayers were exposed to whole cigarette smoke (WCS) or air with or without roflumilast treatment. CFTR-dependent ion transport was measured in modified Ussing chambers. Airway surface liquid (ASL) was determined by confocal microscopy. Intestinal fluid secretion of ligated murine intestine was monitored ex vivo. Roflumilast activated CFTR-dependent anion transport in normal HBE cells with a half maximal effective concentration of 2.9 nM. Roflumilast partially restored CFTR activity in WCS-exposed HBE cells (5.3 ± 1.1 μA/cm(2) vs. 1.2 ± 0.2 μA/cm(2) [control]; P < 0.05) and was additive with ivacaftor, a specific CFTR potentiator approved for the treatment of CF. Roflumilast improved the depleted ASL depth of HBE monolayers exposed to WCS (9.0 ± 3.1 μm vs. 5.6 ± 2.0 μm [control]; P < 0.05), achieving 79% of that observed in air controls. CFTR activation by roflumilast also induced CFTR-dependent fluid secretion in murine intestine, increasing the wet:dry ratio and the diameter of ligated murine segments. Roflumilast activates CFTR-mediated anion transport in airway and intestinal epithelia via a cyclic adenosine monophosphate-dependent pathway and partially reverses the deleterious effects of WCS, resulting in augmented ASL depth. Roflumilast may benefit patients with chronic obstructive pulmonary disease with chronic bronchitis by activating CFTR, which may also underlie noninfectious diarrhea caused by roflumilast.


American Journal of Respiratory Cell and Molecular Biology | 2010

Activation of the cystic fibrosis transmembrane conductance regulator by the flavonoid quercetin: potential use as a biomarker of ΔF508 cystic fibrosis transmembrane conductance regulator rescue.

Louise C. Pyle; Jennifer C. Fulton; Peter A. Sloane; Kyle Backer; Marina Mazur; Jeevan K. Prasain; Stephen Barnes; John P. Clancy; Steven M. Rowe

Therapies to correct the ΔF508 cystic fibrosis transmembrane conductance regulator (CFTR) folding defect require sensitive methods to detect channel activity in vivo. The β₂ adrenergic receptor agonists, which provide the CFTR stimuli commonly used in nasal potential difference assays, may not overcome the channel gating defects seen in ΔF508 CFTR after plasma membrane localization. In this study, we identify an agent, quercetin, that enhances the detection of surface ΔF508 CFTR, and is suitable for nasal perfusion. A screen of flavonoids in CFBE41o⁻ cells stably transduced with ΔF508 CFTR, corrected to the cell surface with low temperature growth, revealed that quercetin stimulated an increase in the short-circuit current. This increase was dose-dependent in both Fisher rat thyroid and CFBE41o⁻ cells. High concentrations inhibited Cl⁻ conductance. In CFBE41o⁻ airway cells, quercetin (20 μg/ml) activated ΔF508 CFTR, whereas the β₂ adrenergic receptor agonist isoproterenol did not. Quercetin had limited effects on cAMP levels, but did not produce detectable phosphorylation of the isolated CFTR R-domain, suggesting an activation independent of channel phosphorylation. When perfused in the nares of Cftr(+) mice, quercetin (20 μg/ml) produced a hyperpolarization of the potential difference that was absent in Cftr(-/-) mice. Finally, quercetin-induced, dose-dependent hyperpolarization of the nasal potential difference was also seen in normal human subjects. Quercetin activates CFTR-mediated anion transport in respiratory epithelia in vitro and in vivo, and may be useful in studies intended to detect the rescue of ΔF508 CFTR by nasal potential difference.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2016

Combination therapy with cystic fibrosis transmembrane conductance regulator modulators augment the airway functional microanatomy.

Susan E. Birket; Kengyeh K. Chu; Grace H. Houser; Linbo Liu; Courtney M. Fernandez; George M. Solomon; Vivian Lin; Suresh Shastry; Marina Mazur; Peter A. Sloane; Justin Hanes; William E. Grizzle; Eric J. Sorscher; Guillermo J. Tearney; Steven M. Rowe

Recently approved therapies that modulate CFTR function have shown significant clinical benefit, but recent investigations regarding their molecular mechanism when used in combination have not been consistent with clinical results. We employed micro-optical coherence tomography as a novel means to assess the mechanism of action of CFTR modulators, focusing on the effects on mucociliary clearance. Primary human airway monolayers from patients with a G551D mutation responded to ivacaftor treatment with increased ion transport, airway surface liquid depth, ciliary beat frequency, and mucociliary transport rate, in addition to decreased effective viscosity of the mucus layer, a unique mechanism established by our findings. These endpoints are consistent with the benefit observed in G551D patients treated with ivacaftor, and identify a novel mechanism involving mucus viscosity. In monolayers derived from F508del patients, the situation is more complicated, compounded by disparate effects on CFTR expression and function. However, by combining ion transport measurements with functional imaging, we establish a crucial link between in vitro data and clinical benefit, a finding not explained by ion transport studies alone. We establish that F508del cells exhibit increased mucociliary transport and decreased mucus effective viscosity, but only when ivacaftor is added to the regimen. We further show that improvement in the functional microanatomy in vitro corresponds with lung function benefit observed in the clinical trials, whereas ion transport in vitro corresponds to changes in sweat chloride. Functional imaging reveals insights into clinical efficacy and CFTR biology that significantly impact our understanding of novel therapies.

Collaboration


Dive into the Marina Mazur's collaboration.

Top Co-Authors

Avatar

Steven M. Rowe

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Eric J. Sorscher

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Peter A. Sloane

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Li Ping Tang

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Suresh Shastry

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John P. Clancy

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

William E. Grizzle

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Yao Li

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Carmel M. McNicholas

University of Alabama at Birmingham

View shared research outputs
Researchain Logo
Decentralizing Knowledge