Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter A. Sloane is active.

Publication


Featured researches published by Peter A. Sloane.


PLOS ONE | 2012

A Pharmacologic Approach to Acquired Cystic Fibrosis Transmembrane Conductance Regulator Dysfunction in Smoking Related Lung Disease

Peter A. Sloane; Suresh Shastry; Andrew M. Wilhelm; Clifford Courville; Li Ping Tang; Kyle Backer; Elina Levin; S. Vamsee Raju; Yao Li; Marina Mazur; Suzanne Byan-Parker; William E. Grizzle; Eric J. Sorscher; Mark T. Dransfield; Steven M. Rowe

Background Mucus stasis in chronic obstructive pulmonary disease (COPD) is a significant contributor to morbidity and mortality. Potentiators of cystic fibrosis transmembrane conductance regulator (CFTR) activity pharmacologically enhance CFTR function; ivacaftor is one such agent approved to treat CF patients with the G551D-CFTR gating mutation. CFTR potentiators may also be useful for other diseases of mucus stasis, including COPD. Methods and Findings In primary human bronchial epithelial cells, exposure to cigarette smoke extract diminished CFTR-mediated anion transport (65.8±0.2% of control, P<0.005) and mucociliary transport (0.17±0.05 µm/sec vs. 2.4±0.47 µm/sec control, P<0.05) by reducing airway surface liquid depth (7.3±0.6 µm vs. 13.0±0.6 µm control, P<0.005) and augmenting mucus expression (by 64%, P<0.05) without altering transepithelial resistance. Smokers with or without COPD had reduced CFTR activity measured by nasal potential difference compared to age-matched non-smokers (−6.3±1.4 and −8.0±2.0 mV, respectively vs. −15.2±2.7 mV control, each P<0.005, n = 12–14/group); this CFTR decrement was associated with symptoms of chronic bronchitis as measured by the Breathlessness Cough and Sputum Score (r = 0.30, P<0.05) despite controlling for smoking (r = 0.31, P<0.05). Ivacaftor activated CFTR-dependent chloride transport in non-CF epithelia and ameliorated the functional CFTR defect induced by smoke to 185±36% of non-CF control (P<0.05), thereby increasing airway surface liquid (from 7.3±0.6 µm to 10.1±0.4 µm, P<0.005) and mucociliary transport (from 0.27±0.11 µm/s to 2.7±0.28 µm/s, P<0.005). Conclusions Cigarette smoking reduces CFTR activity and is causally related to reduced mucus transport in smokers due to inhibition of CFTR dependent fluid transport. These effects are reversible by the CFTR potentiator ivacaftor, representing a potential therapeutic strategy to augment mucociliary clearance in patients with smoking related lung disease.


American Journal of Respiratory and Critical Care Medicine | 2013

Cigarette smoke induces systemic defects in cystic fibrosis transmembrane conductance regulator function.

S. Vamsee Raju; Patricia L. Jackson; Clifford Courville; Carmel M. McNicholas; Peter A. Sloane; Gina Sabbatini; Sherry Tidwell; Li Ping Tang; Bo Liu; James A. Fortenberry; Caleb Jones; Jeremy A. Boydston; John P. Clancy; Larry E. Bowen; Frank J. Accurso; J. Edwin Blalock; Mark T. Dransfield; Steven M. Rowe

RATIONALE Several extrapulmonary disorders have been linked to cigarette smoking. Smoking is reported to cause cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction in the airway, and is also associated with pancreatitis, male infertility, and cachexia, features characteristic of cystic fibrosis and suggestive of an etiological role for CFTR. OBJECTIVES To study the effect of cigarette smoke on extrapulmonary CFTR function. METHODS Demographics, spirometry, exercise tolerance, symptom questionnaires, CFTR genetics, and sweat chloride analysis were obtained in smokers with and without chronic obstructive pulmonary disease (COPD). CFTR activity was measured by nasal potential difference in mice and by Ussing chamber electrophysiology in vitro. Serum acrolein levels were estimated with mass spectroscopy. MEASUREMENTS AND MAIN RESULTS Healthy smokers (29.45 ± 13.90 mEq), smokers with COPD (31.89 ± 13.9 mEq), and former smokers with COPD (25.07 ± 10.92 mEq) had elevated sweat chloride levels compared with normal control subjects (14.5 ± 7.77 mEq), indicating reduced CFTR activity in a nonrespiratory organ. Intestinal current measurements also demonstrated a 65% decrease in CFTR function in smokers compared with never smokers. CFTR activity was decreased by 68% in normal human bronchial epithelial cells exposed to plasma from smokers, suggesting that one or more circulating agents could confer CFTR dysfunction. Cigarette smoke-exposed mice had decreased CFTR activity in intestinal epithelium (84.3 and 45%, after 5 and 17 wk, respectively). Acrolein, a component of cigarette smoke, was higher in smokers, blocked CFTR by inhibiting channel gating, and was attenuated by antioxidant N-acetylcysteine, a known scavenger of acrolein. CONCLUSIONS Smoking causes systemic CFTR dysfunction. Acrolein present in cigarette smoke mediates CFTR defects in extrapulmonary tissues in smokers.


Current Opinion in Pulmonary Medicine | 2010

Cystic fibrosis transmembrane conductance regulator protein repair as a therapeutic strategy in cystic fibrosis.

Peter A. Sloane; Steven M. Rowe

Purpose of review Recent progress in understanding the production, processing, and function of the cystic fibrosis gene product, the cystic fibrosis transmembrane conductance regulator (CFTR), has revealed new therapeutic targets to repair the mutant protein. Classification of CFTR mutations and new treatment strategies to address each will be described here. Recent findings High-throughput screening and other drug discovery efforts have identified small molecules that restore activity to mutant CFTR. Compounds such as VX-770 that potentiate CFTR have demonstrated exciting results in recent clinical trials and demonstrate robust effects across several CFTR mutation classes in the laboratory. A number of novel F508del CFTR processing correctors restore protein to the cell surface and improve ion channel function in vitro and are augmented by coadministration of CFTR potentiators. Ongoing discovery efforts that target protein folding, CFTR trafficking, and cell stress have also indicated promising results. Aminoglycosides and the novel small molecule ataluren induce translational readthrough of nonsense mutations in CFTR and other genetic diseases in vitro and in vivo and have shown activity in proof of concept trials, and ataluren is now being studied in confirmatory trials. Summary An improved understanding of the molecular mechanisms underlying the basic genetic defect in cystic fibrosis have led to new treatment strategies to repair the mutant protein.


Pulmonary Pharmacology & Therapeutics | 2010

ΔF508 CFTR processing correction and activity in polarized airway and non-airway cell monolayers

Steven M. Rowe; Louise C. Pyle; A. Jurkevante; Karoly Varga; James F. Collawn; Peter A. Sloane; B. Woodworth; Marina Mazur; Jennifer C. Fulton; Lijuan Fan; Yao Li; J. Fortenberry; Eric J. Sorscher; John P. Clancy

We examined the activity of DeltaF508 cystic fibrosis transmembrane conductance regulator (CFTR) stably expressed in polarized cystic fibrosis bronchial epithelial cells (CFBE41o(-)) human airway cells and Fisher Rat Thyroid (FRT) cells following treatment with low temperature and a panel of small molecule correctors of DeltaF508 CFTR misprocessing. Corr-4a increased DeltaF508 CFTR-dependent Cl(-) conductance in both cell types, whereas treatment with VRT-325 or VRT-640 increased activity only in FRT cells. Total currents stimulated by forskolin and genistein demonstrated similar dose/response effects to Corr-4a treatment in each cell type. When examining the relative contribution of forskolin and genistein to total stimulated current, CFBE41o(-) cells had smaller forskolin-stimulated I(sc) following either low temperature or corr-4a treatment (10-30% of the total I(sc) produced by the combination of both CFTR agonists). In contrast, forskolin consistently contributed greater than 40% of total I(sc) in DeltaF508 CFTR-expressing FRT cells corrected with low temperature, and corr-4a treatment preferentially enhanced forskolin dependent currents only in FRT cells (60% of total I(sc)). DeltaF508 CFTR cDNA transcript levels, DeltaF508 CFTR C band levels, or cAMP signaling did not account for the reduced forskolin response in CFBE41o(-) cells. Treatment with non-specific inhibitors of phosphodiesterases (papaverine) or phosphatases (endothall) did not restore DeltaF508 CFTR activation by forskolin in CFBE41o(-) cells, indicating that the Cl(-) transport defect in airway cells is distal to cAMP or its metabolism. The results identify important differences in DeltaF508 CFTR activation in polarizing epithelial models of CF, and have important implications regarding detection of rescued of DeltaF508 CFTR in vivo.


Journal of Molecular Medicine | 2011

Suppression of CFTR premature termination codons and rescue of CFTR protein and function by the synthetic aminoglycoside NB54

Steven M. Rowe; Peter A. Sloane; Li Ping Tang; Kyle Backer; Marina Mazur; Jessica Buckley-Lanier; Igor Nudelman; Valery Belakhov; Zsuzsa Bebok; Erik M. Schwiebert; Timor Baasov; David M. Bedwell

Certain aminoglycosides are capable of inducing “translational readthrough” of premature termination codons (PTCs). However, toxicity and relative lack of efficacy deter treatment with clinically available aminoglycosides for genetic diseases caused by PTCs, including cystic fibrosis (CF). Using a structure-based approach, the novel aminoglycoside NB54 was developed that exhibits reduced toxicity and enhanced suppression of PTCs in cell-based reporter assays relative to gentamicin. We examined whether NB54 administration rescued CFTR protein and function in clinically relevant CF models. In a fluorescence-based halide efflux assay, NB54 partially restored halide efflux in a CF bronchial epithelial cell line (CFTR genotype W1282X/F508del), but not in a CF epithelial cell line lacking a PTC (F508del/F508del). In polarized airway epithelial cells expressing either a CFTR-W1282X or -G542X cDNA, treatment with NB54 increased stimulated short-circuit current (ISC) with greater efficiency than gentamicin. NB54 and gentamicin induced comparable increases in forskolin-stimulated ISC in primary airway epithelial cells derived from a G542X/F508del CF donor. Systemic administration of NB54 to Cftr−/− mice expressing a human CFTR-G542X transgene restored 15–17% of the average stimulated transepithelial chloride currents observed in wild-type (Cftr+/+) mice, comparable to gentamicin. NB54 exhibited reduced cellular toxicity in vitro and was tolerated at higher concentrations than gentamicin in vivo. These results provide evidence that synthetic aminoglycosides are capable of PTC suppression in relevant human CF cells and a CF animal model and support further development of these compounds as a treatment modality for genetic diseases caused by PTCs.


American Journal of Respiratory Cell and Molecular Biology | 2010

Activation of the cystic fibrosis transmembrane conductance regulator by the flavonoid quercetin: potential use as a biomarker of ΔF508 cystic fibrosis transmembrane conductance regulator rescue.

Louise C. Pyle; Jennifer C. Fulton; Peter A. Sloane; Kyle Backer; Marina Mazur; Jeevan K. Prasain; Stephen Barnes; John P. Clancy; Steven M. Rowe

Therapies to correct the ΔF508 cystic fibrosis transmembrane conductance regulator (CFTR) folding defect require sensitive methods to detect channel activity in vivo. The β₂ adrenergic receptor agonists, which provide the CFTR stimuli commonly used in nasal potential difference assays, may not overcome the channel gating defects seen in ΔF508 CFTR after plasma membrane localization. In this study, we identify an agent, quercetin, that enhances the detection of surface ΔF508 CFTR, and is suitable for nasal perfusion. A screen of flavonoids in CFBE41o⁻ cells stably transduced with ΔF508 CFTR, corrected to the cell surface with low temperature growth, revealed that quercetin stimulated an increase in the short-circuit current. This increase was dose-dependent in both Fisher rat thyroid and CFBE41o⁻ cells. High concentrations inhibited Cl⁻ conductance. In CFBE41o⁻ airway cells, quercetin (20 μg/ml) activated ΔF508 CFTR, whereas the β₂ adrenergic receptor agonist isoproterenol did not. Quercetin had limited effects on cAMP levels, but did not produce detectable phosphorylation of the isolated CFTR R-domain, suggesting an activation independent of channel phosphorylation. When perfused in the nares of Cftr(+) mice, quercetin (20 μg/ml) produced a hyperpolarization of the potential difference that was absent in Cftr(-/-) mice. Finally, quercetin-induced, dose-dependent hyperpolarization of the nasal potential difference was also seen in normal human subjects. Quercetin activates CFTR-mediated anion transport in respiratory epithelia in vitro and in vivo, and may be useful in studies intended to detect the rescue of ΔF508 CFTR by nasal potential difference.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2016

Combination therapy with cystic fibrosis transmembrane conductance regulator modulators augment the airway functional microanatomy.

Susan E. Birket; Kengyeh K. Chu; Grace H. Houser; Linbo Liu; Courtney M. Fernandez; George M. Solomon; Vivian Lin; Suresh Shastry; Marina Mazur; Peter A. Sloane; Justin Hanes; William E. Grizzle; Eric J. Sorscher; Guillermo J. Tearney; Steven M. Rowe

Recently approved therapies that modulate CFTR function have shown significant clinical benefit, but recent investigations regarding their molecular mechanism when used in combination have not been consistent with clinical results. We employed micro-optical coherence tomography as a novel means to assess the mechanism of action of CFTR modulators, focusing on the effects on mucociliary clearance. Primary human airway monolayers from patients with a G551D mutation responded to ivacaftor treatment with increased ion transport, airway surface liquid depth, ciliary beat frequency, and mucociliary transport rate, in addition to decreased effective viscosity of the mucus layer, a unique mechanism established by our findings. These endpoints are consistent with the benefit observed in G551D patients treated with ivacaftor, and identify a novel mechanism involving mucus viscosity. In monolayers derived from F508del patients, the situation is more complicated, compounded by disparate effects on CFTR expression and function. However, by combining ion transport measurements with functional imaging, we establish a crucial link between in vitro data and clinical benefit, a finding not explained by ion transport studies alone. We establish that F508del cells exhibit increased mucociliary transport and decreased mucus effective viscosity, but only when ivacaftor is added to the regimen. We further show that improvement in the functional microanatomy in vitro corresponds with lung function benefit observed in the clinical trials, whereas ion transport in vitro corresponds to changes in sweat chloride. Functional imaging reveals insights into clinical efficacy and CFTR biology that significantly impact our understanding of novel therapies.


American Journal of Respiratory Cell and Molecular Biology | 2017

The Cystic Fibrosis Transmembrane Conductance Regulator Potentiator Ivacaftor Augments Mucociliary Clearance Abrogating Cystic Fibrosis Transmembrane Conductance Regulator Inhibition by Cigarette Smoke

S. Vamsee Raju; Vivian Lin; Limbo Liu; Carmel M. McNicholas; Suman Karki; Peter A. Sloane; Liping Tang; Patricia L. Jackson; Wei Wang; Landon Wilson; Kevin Macon; Marina Mazur; John C. Kappes; Lawrence J. DeLucas; Stephen Barnes; Kevin L. Kirk; Guillermo J. Tearney; Steven M. Rowe

&NA; Acquired cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction may contribute to chronic obstructive pulmonary disease pathogenesis and is a potential therapeutic target. We sought to determine the acute effects of cigarette smoke on ion transport and the mucociliary transport apparatus, their mechanistic basis, and whether deleterious effects could be reversed with the CFTR potentiator ivacaftor (VX‐770). Primary human bronchial epithelial (HBE) cells and human bronchi were exposed to cigarette smoke extract (CSE) and/or ivacaftor. CFTR function and expression were measured in Ussing chambers and by surface biotinylation. CSE‐derived acrolein modifications on CFTR were determined by mass spectroscopic analysis of purified protein, and the functional microanatomy of the airway epithelia was measured by 1‐&mgr;m resolution optical coherence tomography. CSE reduced CFTR‐dependent current in HBE cells (P < 0.05) and human bronchi (P < 0.05) within minutes of exposure. The mechanism involved CSE‐induced reduction of CFTR gating, decreasing CFTR open‐channel probability by approximately 75% immediately after exposure (P < 0.05), whereas surface CFTR expression was partially reduced with chronic exposure, but was stable acutely. CSE treatment of purified CFTR resulted in acrolein modifications on lysine and cysteine residues that likely disrupt CFTR gating. In primary HBE cells, CSE reduced airway surface liquid depth (P < 0.05) and ciliary beat frequency (P < 0.05) within 60 minutes that was restored by coadministration with ivacaftor (P < 0.005). Cigarette smoking transmits acute reductions in CFTR activity, adversely affecting the airway surface. These effects are reversible by a CFTR potentiator in vitro, representing a potential therapeutic strategy in patients with chronic obstructive pulmonary disease with chronic bronchitis.


Pediatric Anesthesia | 2017

Pediatric anaphylaxis in the operating room for anesthesia residents: a simulation study

Emily B. Johnston; Collin King; Peter A. Sloane; Jerral W. Cox; Amber Q. Youngblood; Jerry Lynn Zinkan; Nancy M. Tofil

Pediatric intraoperative emergencies are rare but it is crucial for an anesthesia resident to be proficient in their management. Even the more common emergencies like anaphylaxis may not happen frequently for this proficiency to occur. Simulation increases exposure to these rare events in a safe learning environment to improve skills and build confidence while standardizing curriculum.


Respiratory Research | 2017

Roflumilast reverses CFTR-mediated ion transport dysfunction in cigarette smoke-exposed mice

S. Vamsee Raju; Lawrence Rasmussen; Peter A. Sloane; Li Ping Tang; Emily Falk Libby; Steven M. Rowe

Collaboration


Dive into the Peter A. Sloane's collaboration.

Top Co-Authors

Avatar

Steven M. Rowe

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Marina Mazur

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Li Ping Tang

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

John P. Clancy

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Kyle Backer

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

S. Vamsee Raju

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Clifford Courville

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Eric J. Sorscher

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jennifer C. Fulton

University of Alabama at Birmingham

View shared research outputs
Researchain Logo
Decentralizing Knowledge