Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marina Pajic is active.

Publication


Featured researches published by Marina Pajic.


Nature | 2013

Signatures of mutational processes in human cancer

Ludmil B. Alexandrov; Serena Nik-Zainal; David C. Wedge; Samuel Aparicio; Sam Behjati; Andrew V. Biankin; Graham R. Bignell; Niccolo Bolli; Åke Borg; Anne Lise Børresen-Dale; Sandrine Boyault; Birgit Burkhardt; Adam Butler; Carlos Caldas; Helen Davies; Christine Desmedt; Roland Eils; Jórunn Erla Eyfjörd; John A. Foekens; Mel Greaves; Fumie Hosoda; Barbara Hutter; Tomislav Ilicic; Sandrine Imbeaud; Marcin Imielinsk; Natalie Jäger; David T. W. Jones; David Jones; Stian Knappskog; Marcel Kool

All cancers are caused by somatic mutations; however, understanding of the biological processes generating these mutations is limited. The catalogue of somatic mutations from a cancer genome bears the signatures of the mutational processes that have been operative. Here we analysed 4,938,362 mutations from 7,042 cancers and extracted more than 20 distinct mutational signatures. Some are present in many cancer types, notably a signature attributed to the APOBEC family of cytidine deaminases, whereas others are confined to a single cancer class. Certain signatures are associated with age of the patient at cancer diagnosis, known mutagenic exposures or defects in DNA maintenance, but many are of cryptic origin. In addition to these genome-wide mutational signatures, hypermutation localized to small genomic regions, ‘kataegis’, is found in many cancer types. The results reveal the diversity of mutational processes underlying the development of cancer, with potential implications for understanding of cancer aetiology, prevention and therapy.


Nature | 2015

Whole genomes redefine the mutational landscape of pancreatic cancer

Nicola Waddell; Marina Pajic; Ann-Marie Patch; David K. Chang; Karin S. Kassahn; Peter Bailey; Amber L. Johns; David Miller; Katia Nones; Kelly Quek; Michael Quinn; Alan Robertson; Muhammad Z.H. Fadlullah; Timothy J. C. Bruxner; Angelika N. Christ; Ivon Harliwong; Senel Idrisoglu; Suzanne Manning; Craig Nourse; Ehsan Nourbakhsh; Shivangi Wani; Peter J. Wilson; Emma Markham; Nicole Cloonan; Matthew J. Anderson; J. Lynn Fink; Oliver Holmes; Stephen Kazakoff; Conrad Leonard; Felicity Newell

Pancreatic cancer remains one of the most lethal of malignancies and a major health burden. We performed whole-genome sequencing and copy number variation (CNV) analysis of 100 pancreatic ductal adenocarcinomas (PDACs). Chromosomal rearrangements leading to gene disruption were prevalent, affecting genes known to be important in pancreatic cancer (TP53, SMAD4, CDKN2A, ARID1A and ROBO2) and new candidate drivers of pancreatic carcinogenesis (KDM6A and PREX2). Patterns of structural variation (variation in chromosomal structure) classified PDACs into 4 subtypes with potential clinical utility: the subtypes were termed stable, locally rearranged, scattered and unstable. A significant proportion harboured focal amplifications, many of which contained druggable oncogenes (ERBB2, MET, FGFR1, CDK6, PIK3R3 and PIK3CA), but at low individual patient prevalence. Genomic instability co-segregated with inactivation of DNA maintenance genes (BRCA1, BRCA2 or PALB2) and a mutational signature of DNA damage repair deficiency. Of 8 patients who received platinum therapy, 4 of 5 individuals with these measures of defective DNA maintenance responded.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Selective induction of chemotherapy resistance of mammary tumors in a conditional mouse model for hereditary breast cancer

Sven Rottenberg; Anders O.H. Nygren; Marina Pajic; Fijs W. B. van Leeuwen; Ingrid van der Heijden; Koen van de Wetering; Xiaoling Liu; Karin E. de Visser; K. Gilhuijs; Olaf van Tellingen; Jan P. Schouten; Jos Jonkers; Piet Borst

We have studied in vivo responses of “spontaneous” Brca1- and p53-deficient mammary tumors arising in conditional mouse mutants to treatment with doxorubicin, docetaxel, or cisplatin. Like human tumors, the response of individual mouse tumors varies, but eventually they all become resistant to the maximum tolerable dose of doxorubicin or docetaxel. The tumors also respond well to cisplatin but do not become resistant, even after multiple treatments in which tumors appear to regrow from a small fraction of surviving cells. Classical biochemical resistance mechanisms, such as up-regulated drug transporters, appear to be responsible for doxorubicin resistance, rather than alterations in drug-damage effector pathways. Our results underline the promise of these mouse tumors for the study of tumor-initiating cells and of drug therapy of human cancer.


Annals of Oncology | 2012

The prognostic and predictive value of serum CA19.9 in pancreatic cancer

Jeremy L. Humphris; David K. Chang; Amber L. Johns; Christopher J. Scarlett; Marina Pajic; Marc D. Jones; Emily K. Colvin; Adnan Nagrial; Venessa T. Chin; Lorraine A. Chantrill; Jaswinder S. Samra; Anthony J. Gill; James G. Kench; Neil D. Merrett; Amitabha Das; Elizabeth A. Musgrove; Robert L. Sutherland; Andrew V. Biankin

Background Current staging methods for pancreatic cancer (PC) are inadequate, and biomarkers to aid clinical decision making are lacking. Despite the availability of the serum marker carbohydrate antigen 19.9 (CA19.9) for over two decades, its precise role in the management of PC is yet to be defined, and as a consequence, it is not widely used. Methods We assessed the relationship between perioperative serum CA19.9 levels, survival and adjuvant chemotherapeutic responsiveness in a cohort of 260 patients who underwent operative resection for PC. Results By specifically assessing the subgroup of patients with detectable CA19.9, we identified potential utility at key clinical decision points. Low postoperative CA19.9 at 3 months (median survival 25.6 vs 14.8 months, P = 0.0052) and before adjuvant chemotherapy were independent prognostic factors. Patients with postoperative CA 19.9 levels >90 U/ml did not benefit from adjuvant chemotherapy (P = 0.7194) compared with those with a CA19.9 of ≤90 U/ml (median 26.0 vs 16.7 months, P = 0.0108). Normalization of CA19.9 within 6 months of resection was also an independent favorable prognostic factor (median 29.9 vs 14.8 months, P = 0.0004) and normal perioperative CA19.9 levels identified a good prognostic group, which was associated with a 5-year survival of 42%. Conclusions Perioperative serum CA19.9 measurements are informative in patients with detectable CA19.9 (defined by serum levels of >5 U/ml) and have potential clinical utility in predicting outcome and response to adjuvant chemotherapy. Future clinical trials should prioritize incorporation of CA19.9 measurement at key decision points to prospectively validate these findings and facilitate implementation.


Clinical Cancer Research | 2015

Precision Medicine for Advanced Pancreas Cancer: The Individualized Molecular Pancreatic Cancer Therapy (IMPaCT) Trial

Lorraine A. Chantrill; Adnan Nagrial; Clare Watson; Amber L. Johns; Mona Martyn-Smith; Skye Simpson; Scott Mead; Marc D. Jones; Jaswinder S. Samra; Anthony J. Gill; Nicole Watson; Venessa T. Chin; Jeremy L. Humphris; Angela Chou; Belinda Brown; Adrienne Morey; Marina Pajic; Sean M. Grimmond; David K. Chang; David Thomas; Lucille Sebastian; Katrin Marie Sjoquist; Sonia Yip; Nick Pavlakis; Ray Asghari; Sandra Harvey; Peter Grimison; John Simes; Andrew V. Biankin

Purpose: Personalized medicine strategies using genomic profiling are particularly pertinent for pancreas cancer. The Individualized Molecular Pancreatic Cancer Therapy (IMPaCT) trial was initially designed to exploit results from genome sequencing of pancreatic cancer under the auspices of the International Cancer Genome Consortium (ICGC) in Australia. Sequencing revealed small subsets of patients with aberrations in their tumor genome that could be targeted with currently available therapies. Experimental Design: The pilot stage of the IMPaCT trial assessed the feasibility of acquiring suitable tumor specimens for molecular analysis and returning high-quality actionable genomic data within a clinically acceptable timeframe. We screened for three molecular targets: HER2 amplification; KRAS wild-type; and mutations in DNA damage repair pathways (BRCA1, BRCA2, PALB2, ATM). Results: Tumor biopsy and archived tumor samples were collected from 93 patients and 76 were screened. To date 22 candidate cases have been identified: 14 KRAS wild-type, 5 cases of HER2 amplification, 2 mutations in BRCA2, and 1 ATM mutation. Median time from consent to the return of validated results was 21.5 days. An inability to obtain a biopsy or insufficient tumor content in the available specimen were common reasons for patient exclusion from molecular analysis while deteriorating performance status prohibited a number of patients from proceeding in the study. Conclusions: Documenting the feasibility of acquiring and screening biospecimens for actionable molecular targets in real time will aid other groups embarking on similar trials. Key elements include the need to better prescreen patients, screen more patients, and offer more attractive clinical trial options. Clin Cancer Res; 21(9); 2029–37. ©2015 AACR.


International Journal of Cancer | 2014

Genome-wide DNA methylation patterns in pancreatic ductal adenocarcinoma reveal epigenetic deregulation of SLIT-ROBO, ITGA2 and MET signaling

Katia Nones; Nic Waddell; Sarah Song; Ann Marie Patch; David Miller; Amber L. Johns; Jianmin Wu; Karin S. Kassahn; David L. A. Wood; Peter Bailey; Lynn Fink; Suzanne Manning; Angelika N. Christ; Craig Nourse; Stephen Kazakoff; Darrin Taylor; Conrad Leonard; David K. Chang; Marc D. Jones; Michelle Thomas; Clare Watson; Mark Pinese; Mark J. Cowley; Ilse Rooman; Marina Pajic; Giovanni Butturini; Anna Malpaga; Vincenzo Corbo; Stefano Crippa; Massimo Falconi

The importance of epigenetic modifications such as DNA methylation in tumorigenesis is increasingly being appreciated. To define the genome‐wide pattern of DNA methylation in pancreatic ductal adenocarcinomas (PDAC), we captured the methylation profiles of 167 untreated resected PDACs and compared them to a panel of 29 adjacent nontransformed pancreata using high‐density arrays. A total of 11,634 CpG sites associated with 3,522 genes were significantly differentially methylated (DM) in PDAC and were capable of segregating PDAC from non‐malignant pancreas, regardless of tumor cellularity. As expected, PDAC hypermethylation was most prevalent in the 5′ region of genes (including the proximal promoter, 5′UTR and CpG islands). Approximately 33% DM genes showed significant inverse correlation with mRNA expression levels. Pathway analysis revealed an enrichment of aberrantly methylated genes involved in key molecular mechanisms important to PDAC: TGF‐β, WNT, integrin signaling, cell adhesion, stellate cell activation and axon guidance. Given the recent discovery that SLIT‐ROBO mutations play a clinically important role in PDAC, the role of epigenetic perturbation of axon guidance was pursued in more detail. Bisulfite amplicon deep sequencing and qRT‐PCR expression analyses confirmed recurrent perturbation of axon guidance pathway genes SLIT2, SLIT3, ROBO1, ROBO3, ITGA2 and MET and suggests epigenetic suppression of SLIT‐ROBO signaling and up‐regulation of MET and ITGA2 expression. Hypomethylation of MET and ITGA2 correlated with high gene expression, which was associated with poor survival. These data suggest that aberrant methylation plays an important role in pancreatic carcinogenesis affecting core signaling pathways with potential implications for the disease pathophysiology and therapy.


Cancer Research | 2009

Moderate Increase in Mdr1a/1b Expression Causes In vivo Resistance to Doxorubicin in a Mouse Model for Hereditary Breast Cancer

Marina Pajic; Jayasree K. Iyer; Ariena Kersbergen; Eline van der Burg; Anders O.H. Nygren; Jos Jonkers; Piet Borst; Sven Rottenberg

We have found previously that acquired doxorubicin resistance in a genetically engineered mouse model for BRCA1-related breast cancer was associated with increased expression of the mouse multidrug resistance (Mdr1) genes, which encode the drug efflux transporter ATP-binding cassette B1/P-glycoprotein (P-gp). Here, we show that even moderate increases of Mdr1 expression (as low as 5-fold) are sufficient to cause doxorubicin resistance. These moderately elevated tumor P-gp levels are below those found in some normal tissues, such as the gut. The resistant phenotype could be completely reversed by the third-generation P-gp inhibitor tariquidar, which provides a useful strategy to circumvent this type of acquired doxorubicin resistance. The presence of MDR1A in drug-resistant tumors with a moderate increase in Mdr1a transcripts could be shown with a newly generated chicken antibody against a mouse P-gp peptide. Our data show the usefulness of realistic preclinical models to characterize levels of Mdr1 gene expression that are sufficient to cause resistance.


Cancer Research | 2010

Sensitivity and Acquired Resistance of BRCA1;p53-Deficient Mouse Mammary Tumors to the Topoisomerase I Inhibitor Topotecan

Serge A.L. Zander; Ariena Kersbergen; Eline van der Burg; Niels de Water; Olaf van Tellingen; Sjöfn Gunnarsdottir; Janneke E. Jaspers; Marina Pajic; Anders O.H. Nygren; Jos Jonkers; Piet Borst; Sven Rottenberg

There is no tailored therapy yet for human basal-like mammary carcinomas. However, BRCA1 dysfunction is frequently present in these malignancies, compromising homology-directed DNA repair. This defect may serve as the tumors Achilles heel and make the tumor hypersensitive to DNA breaks. We have evaluated this putative synthetic lethality in a genetically engineered mouse model for BRCA1-associated breast cancer, using the topoisomerase I (Top1) poison topotecan as monotherapy and in combination with poly(ADP-ribose) polymerase inhibition by olaparib. All 20 tumors tested were topotecan sensitive, but response heterogeneity was substantial. Although topotecan increased mouse survival, all tumors eventually acquired resistance. As mechanisms of in vivo resistance, we identified overexpression of Abcg2/Bcrp and markedly reduced protein levels of the drug target Top1 (without altered mRNA levels). Tumor-specific genetic ablation of Abcg2 significantly increased overall survival of topotecan-treated animals (P < 0.001), confirming the in vivo relevance of ABCG2 for topotecan resistance in a novel approach. Despite the lack of ABCG2, a putative tumor-initiating cell marker, none of the 11 Abcg2(-/-);Brca1(-/-);p53(-/-) tumors were eradicated, not even by the combination topotecan-olaparib. We find that olaparib substantially increases topotecan toxicity in this model, and we suggest that this might also happen in humans.


Cancer Research | 2009

Small-Molecule Multidrug Resistance–Associated Protein 1 Inhibitor Reversan Increases the Therapeutic Index of Chemotherapy in Mouse Models of Neuroblastoma

Catherine Burkhart; Fujiko Watt; Jayne Murray; Marina Pajic; Anatoly Prokvolit; Chengyuan Xue; Claudia Flemming; Janice Smith; Andrei Purmal; Nadezhda Isachenko; Pavel G. Komarov; Katerina V. Gurova; Alan C. Sartorelli; Glenn M. Marshall; Murray D. Norris; Andrei V. Gudkov; Michelle Haber

The multidrug resistance-associated protein 1 (MRP1) has been closely linked to poor treatment response in several cancers, most notably neuroblastoma. Homozygous deletion of the MRP1 gene in primary murine neuroblastoma tumors resulted in increased sensitivity to MRP1 substrate drugs (vincristine, etoposide, and doxorubicin) compared with tumors containing both copies of wild-type MRP1, indicating that MRP1 plays a significant role in the drug resistance in this tumor type and defining this multidrug transporter as a target for pharmacologic suppression. A cell-based readout system was created to functionally determine intracellular accumulation of MRP1 substrates using a p53-responsive reporter as an indicator of drug-induced DNA damage. Screening of small-molecule libraries in this readout system revealed pyrazolopyrimidines as a prominent structural class of potent MRP1 inhibitors. Reversan, the lead compound of this class, increased the efficacy of both vincristine and etoposide in murine models of neuroblastoma (syngeneic and human xenografts). As opposed to the majority of inhibitors of multidrug transporters, Reversan was not toxic by itself nor did it increase the toxicity of chemotherapeutic drug exposure in mice. Therefore, Reversan represents a new class of nontoxic MRP1 inhibitor, which may be clinically useful for the treatment of neuroblastoma and other MRP1-overexpressing drug-refractory tumors by increasing their sensitivity to conventional chemotherapy.


Journal of Clinical Oncology | 2013

Histomolecular Phenotypes and Outcome in Adenocarcinoma of the Ampulla of Vater

David K. Chang; Nigel B. Jamieson; Amber L. Johns; Christopher J. Scarlett; Marina Pajic; Angela Chou; Mark Pinese; Jeremy L. Humphris; Marc D. Jones; Christopher W. Toon; Adnan Nagrial; Lorraine A. Chantrill; Venessa T. Chin; Andreia V. Pinho; Ilse Rooman; Mark J. Cowley; Jianmin Wu; R. Scott Mead; Emily K. Colvin; Jaswinder S. Samra; Vincenzo Corbo; Claudio Bassi; Massimo Falconi; Rita T. Lawlor; Stefano Crippa; Nicola Sperandio; Samantha Bersani; Euan J. Dickson; Mohamed Mohamed; Karin A. Oien

PURPOSE Individuals with adenocarcinoma of the ampulla of Vater demonstrate a broad range of outcomes, presumably because these cancers may arise from any one of the three epithelia that converge at that location. This variability poses challenges for clinical decision making and the development of novel therapeutic strategies. PATIENTS AND METHODS We assessed the potential clinical utility of histomolecular phenotypes defined using a combination of histopathology and protein expression (CDX2 and MUC1) in 208 patients from three independent cohorts who underwent surgical resection for adenocarcinoma of the ampulla of Vater. RESULTS Histologic subtype and CDX2 and MUC1 expression were significant prognostic variables. Patients with a histomolecular pancreaticobiliary phenotype (CDX2 negative, MUC1 positive) segregated into a poor prognostic group in the training (hazard ratio [HR], 3.34; 95% CI, 1.69 to 6.62; P < .001) and both validation cohorts (HR, 5.65; 95% CI, 2.77 to 11.5; P < .001 and HR, 2.78; 95% CI, 1.25 to 7.17; P = .0119) compared with histomolecular nonpancreaticobiliary carcinomas. Further stratification by lymph node (LN) status defined three clinically relevant subgroups: one, patients with histomolecular nonpancreaticobiliary (intestinal) carcinoma without LN metastases who had an excellent prognosis; two, those with histomolecular pancreaticobiliary carcinoma with LN metastases who had a poor outcome; and three, the remainder of patients (nonpancreaticobiliary, LN positive or pancreaticobiliary, LN negative) who had an intermediate outcome. CONCLUSION Histopathologic and molecular criteria combine to define clinically relevant histomolecular phenotypes of adenocarcinoma of the ampulla of Vater and potentially represent distinct diseases with significant implications for current therapeutic strategies, the ability to interpret past clinical trials, and future trial design.

Collaboration


Dive into the Marina Pajic's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amber L. Johns

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Anthony J. Gill

Kolling Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Mark Pinese

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Adnan Nagrial

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Paul Timpson

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Venessa T. Chin

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Angela Chou

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Claire Vennin

Garvan Institute of Medical Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge