Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark Pinese is active.

Publication


Featured researches published by Mark Pinese.


Nature | 2015

Whole genomes redefine the mutational landscape of pancreatic cancer

Nicola Waddell; Marina Pajic; Ann-Marie Patch; David K. Chang; Karin S. Kassahn; Peter Bailey; Amber L. Johns; David Miller; Katia Nones; Kelly Quek; Michael Quinn; Alan Robertson; Muhammad Z.H. Fadlullah; Timothy J. C. Bruxner; Angelika N. Christ; Ivon Harliwong; Senel Idrisoglu; Suzanne Manning; Craig Nourse; Ehsan Nourbakhsh; Shivangi Wani; Peter J. Wilson; Emma Markham; Nicole Cloonan; Matthew J. Anderson; J. Lynn Fink; Oliver Holmes; Stephen Kazakoff; Conrad Leonard; Felicity Newell

Pancreatic cancer remains one of the most lethal of malignancies and a major health burden. We performed whole-genome sequencing and copy number variation (CNV) analysis of 100 pancreatic ductal adenocarcinomas (PDACs). Chromosomal rearrangements leading to gene disruption were prevalent, affecting genes known to be important in pancreatic cancer (TP53, SMAD4, CDKN2A, ARID1A and ROBO2) and new candidate drivers of pancreatic carcinogenesis (KDM6A and PREX2). Patterns of structural variation (variation in chromosomal structure) classified PDACs into 4 subtypes with potential clinical utility: the subtypes were termed stable, locally rearranged, scattered and unstable. A significant proportion harboured focal amplifications, many of which contained druggable oncogenes (ERBB2, MET, FGFR1, CDK6, PIK3R3 and PIK3CA), but at low individual patient prevalence. Genomic instability co-segregated with inactivation of DNA maintenance genes (BRCA1, BRCA2 or PALB2) and a mutational signature of DNA damage repair deficiency. Of 8 patients who received platinum therapy, 4 of 5 individuals with these measures of defective DNA maintenance responded.


Nucleic Acids Research | 2012

PINA v2.0: mining interactome modules

Mark J. Cowley; Mark Pinese; Karin S. Kassahn; Nic Waddell; John V. Pearson; Sean M. Grimmond; Andrew V. Biankin; Sampsa Hautaniemi; Jianmin Wu

The Protein Interaction Network Analysis (PINA) platform is a comprehensive web resource, which includes a database of unified protein–protein interaction data integrated from six manually curated public databases, and a set of built-in tools for network construction, filtering, analysis and visualization. The second version of PINA enhances its utility for studies of protein interactions at a network level, by including multiple collections of interaction modules identified by different clustering approaches from the whole network of protein interactions (‘interactome’) for six model organisms. All identified modules are fully annotated by enriched Gene Ontology terms, KEGG pathways, Pfam domains and the chemical and genetic perturbations collection from MSigDB. Moreover, a new tool is provided for module enrichment analysis in addition to simple query function. The interactome data are also available on the web site for further bioinformatics analysis. PINA is freely accessible at http://cbg.garvan.unsw.edu.au/pina/.


Cancer Research | 2010

Tyrosine phosphorylation profiling reveals the signaling network characteristics of basal breast cancer cells

Falko Hochgräfe; Luxi Zhang; Sandra A O'Toole; Brigid C. Browne; Mark Pinese; Ana Porta Cubas; Gillian M. Lehrbach; David R. Croucher; Danny Rickwood; Alice Boulghourjian; Robert F. Shearer; Radhika Nair; Alexander Swarbrick; Dana Faratian; Peter Mullen; David J. Harrison; Andrew V. Biankin; Robert L. Sutherland; Mark J. Raftery; Roger J. Daly

To identify therapeutic targets and prognostic markers for basal breast cancers, breast cancer cell lines were subjected to mass spectrometry-based profiling of protein tyrosine phosphorylation events. This revealed that luminal and basal breast cancer cells exhibit distinct tyrosine phosphorylation signatures that depend on pathway activation as well as protein expression. Basal breast cancer cells are characterized by elevated tyrosine phosphorylation of Met, Lyn, EphA2, epidermal growth factor receptor (EGFR), and FAK, and Src family kinase (SFK) substrates such as p130Cas. SFKs exert a prominent role in these cells, phosphorylating key regulators of adhesion and migration and promoting tyrosine phosphorylation of the receptor tyrosine kinases EGFR and Met. Consistent with these observations, SFK inhibition attenuated cellular proliferation, survival, and motility. Basal breast cancer cell lines exhibited differential responsiveness to small molecule inhibitors of EGFR and Met that correlated with the degree of target phosphorylation, and reflecting kinase coactivation, inhibiting two types of activated network kinase (e.g., EGFR and SFKs) was more effective than single agent approaches. FAK signaling enhanced both proliferation and invasion, and Lyn was identified as a proinvasive component of the network that is associated with a basal phenotype and poor prognosis in patients with breast cancer. These studies highlight multiple kinases and substrates for further evaluation as therapeutic targets and biomarkers. However, they also indicate that patient stratification based on expression/activation of drug targets, coupled with use of multi-kinase inhibitors or combination therapies, may be required for effective treatment of this breast cancer subgroup.


PLOS ONE | 2008

Identification of Functional Networks of Estrogen- and c-Myc-Responsive Genes and Their Relationship to Response to Tamoxifen Therapy in Breast Cancer

Elizabeth A. Musgrove; C. Marcelo Sergio; Sherene Loi; Claire K. Inman; Luke R. Anderson; M. Chehani Alles; Mark Pinese; C. Elizabeth Caldon; Judith Schütte; Margaret Gardiner-Garden; Christopher J. Ormandy; Grant A. McArthur; Alison J. Butt; Robert L. Sutherland

Background Estrogen is a pivotal regulator of cell proliferation in the normal breast and breast cancer. Endocrine therapies targeting the estrogen receptor are effective in breast cancer, but their success is limited by intrinsic and acquired resistance. Methodology/Principal Findings With the goal of gaining mechanistic insights into estrogen action and endocrine resistance, we classified estrogen-regulated genes by function, and determined the relationship between functionally-related genesets and the response to tamoxifen in breast cancer patients. Estrogen-responsive genes were identified by transcript profiling of MCF-7 breast cancer cells. Pathway analysis based on functional annotation of these estrogen-regulated genes identified gene signatures with known or predicted roles in cell cycle control, cell growth (i.e. ribosome biogenesis and protein synthesis), cell death/survival signaling and transcriptional regulation. Since inducible expression of c-Myc in antiestrogen-arrested cells can recapitulate many of the effects of estrogen on molecular endpoints related to cell cycle progression, the estrogen-regulated genes that were also targets of c-Myc were identified using cells inducibly expressing c-Myc. Selected genes classified as estrogen and c-Myc targets displayed similar levels of regulation by estrogen and c-Myc and were not estrogen-regulated in the presence of siMyc. Genes regulated by c-Myc accounted for 50% of all acutely estrogen-regulated genes but comprised 85% (110/129 genes) in the cell growth signature. siRNA-mediated inhibition of c-Myc induction impaired estrogen regulation of ribosome biogenesis and protein synthesis, consistent with the prediction that estrogen regulates cell growth principally via c-Myc. The ‘cell cycle’, ‘cell growth’ and ‘cell death’ gene signatures each identified patients with an attenuated response in a cohort of 246 tamoxifen-treated patients. In multivariate analysis the cell death signature was predictive independent of the cell cycle and cell growth signatures. Conclusions/Significance These functionally-based gene signatures can stratify patients treated with tamoxifen into groups with differing outcome, and potentially identify distinct mechanisms of tamoxifen resistance.


Annals of the New York Academy of Sciences | 2007

The effect of resveratrol on a cell model of human aging.

Maurizio Stefani; M. Andrea Markus; Ruby C.Y. Lin; Mark Pinese; Ian W. Dawes; Brian J. Morris

Abstract:  The natural polyphenol resveratrol stimulates sirtuins and extends lifespan. Here resveratrol inhibited expression of replicative senescence marker INK4a in human dermal fibroblasts, and 47 of 19,000 genes from microarray experiments were differentially expressed. These included genes for growth, cell division, cell signaling, apoptosis, and transcription. Genes involved in Ras and ubiquitin pathways, Ras‐GRF1, RAC3, and UBE2D3, were downregulated. The changes suggest resveratrol might alter sirtuin‐regulated downstream pathways, rather than sirtuin activity. Serum deprivation and high confluency caused nuclear translocation of the SIRT1‐regulated transcription factor FOXO3a. Our data indicate resveratrols actions might cause FOXO recruitment to the nucleus.


International Journal of Cancer | 2014

Genome-wide DNA methylation patterns in pancreatic ductal adenocarcinoma reveal epigenetic deregulation of SLIT-ROBO, ITGA2 and MET signaling

Katia Nones; Nic Waddell; Sarah Song; Ann Marie Patch; David Miller; Amber L. Johns; Jianmin Wu; Karin S. Kassahn; David L. A. Wood; Peter Bailey; Lynn Fink; Suzanne Manning; Angelika N. Christ; Craig Nourse; Stephen Kazakoff; Darrin Taylor; Conrad Leonard; David K. Chang; Marc D. Jones; Michelle Thomas; Clare Watson; Mark Pinese; Mark J. Cowley; Ilse Rooman; Marina Pajic; Giovanni Butturini; Anna Malpaga; Vincenzo Corbo; Stefano Crippa; Massimo Falconi

The importance of epigenetic modifications such as DNA methylation in tumorigenesis is increasingly being appreciated. To define the genome‐wide pattern of DNA methylation in pancreatic ductal adenocarcinomas (PDAC), we captured the methylation profiles of 167 untreated resected PDACs and compared them to a panel of 29 adjacent nontransformed pancreata using high‐density arrays. A total of 11,634 CpG sites associated with 3,522 genes were significantly differentially methylated (DM) in PDAC and were capable of segregating PDAC from non‐malignant pancreas, regardless of tumor cellularity. As expected, PDAC hypermethylation was most prevalent in the 5′ region of genes (including the proximal promoter, 5′UTR and CpG islands). Approximately 33% DM genes showed significant inverse correlation with mRNA expression levels. Pathway analysis revealed an enrichment of aberrantly methylated genes involved in key molecular mechanisms important to PDAC: TGF‐β, WNT, integrin signaling, cell adhesion, stellate cell activation and axon guidance. Given the recent discovery that SLIT‐ROBO mutations play a clinically important role in PDAC, the role of epigenetic perturbation of axon guidance was pursued in more detail. Bisulfite amplicon deep sequencing and qRT‐PCR expression analyses confirmed recurrent perturbation of axon guidance pathway genes SLIT2, SLIT3, ROBO1, ROBO3, ITGA2 and MET and suggests epigenetic suppression of SLIT‐ROBO signaling and up‐regulation of MET and ITGA2 expression. Hypomethylation of MET and ITGA2 correlated with high gene expression, which was associated with poor survival. These data suggest that aberrant methylation plays an important role in pancreatic carcinogenesis affecting core signaling pathways with potential implications for the disease pathophysiology and therapy.


Embo Molecular Medicine | 2015

Targeting the LOX/hypoxia axis reverses many of the features that make pancreatic cancer deadly: inhibition of LOX abrogates metastasis and enhances drug efficacy

Bryan W. Miller; Jennifer P. Morton; Mark Pinese; Grazia Saturno; Nigel B. Jamieson; Ewan J. McGhee; Paul Timpson; Joshua Leach; Lynn McGarry; Emma Shanks; Peter Bailey; David K. Chang; Karin A. Oien; Saadia A. Karim; Amy Au; Colin W. Steele; Christopher Ross Carter; Colin J. McKay; Kurt I. Anderson; Thomas Ronald Jeffry Evans; Richard Marais; Caroline J. Springer; Andrew V. Biankin; Janine T. Erler; Owen J. Sansom

Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer‐related mortality. Despite significant advances made in the treatment of other cancers, current chemotherapies offer little survival benefit in this disease. Pancreaticoduodenectomy offers patients the possibility of a cure, but most will die of recurrent or metastatic disease. Hence, preventing metastatic disease in these patients would be of significant benefit. Using principal component analysis (PCA), we identified a LOX/hypoxia signature associated with poor patient survival in resectable patients. We found that LOX expression is upregulated in metastatic tumors from Pdx1‐Cre KrasG12D/+ Trp53R172H/+ (KPC) mice and that inhibition of LOX in these mice suppressed metastasis. Mechanistically, LOX inhibition suppressed both migration and invasion of KPC cells. LOX inhibition also synergized with gemcitabine to kill tumors and significantly prolonged tumor‐free survival in KPC mice with early‐stage tumors. This was associated with stromal alterations, including increased vasculature and decreased fibrillar collagen, and increased infiltration of macrophages and neutrophils into tumors. Therefore, LOX inhibition is able to reverse many of the features that make PDAC inherently refractory to conventional therapies and targeting LOX could improve outcome in surgically resectable disease.


Journal of Clinical Oncology | 2013

Histomolecular Phenotypes and Outcome in Adenocarcinoma of the Ampulla of Vater

David K. Chang; Nigel B. Jamieson; Amber L. Johns; Christopher J. Scarlett; Marina Pajic; Angela Chou; Mark Pinese; Jeremy L. Humphris; Marc D. Jones; Christopher W. Toon; Adnan Nagrial; Lorraine A. Chantrill; Venessa T. Chin; Andreia V. Pinho; Ilse Rooman; Mark J. Cowley; Jianmin Wu; R. Scott Mead; Emily K. Colvin; Jaswinder S. Samra; Vincenzo Corbo; Claudio Bassi; Massimo Falconi; Rita T. Lawlor; Stefano Crippa; Nicola Sperandio; Samantha Bersani; Euan J. Dickson; Mohamed Mohamed; Karin A. Oien

PURPOSE Individuals with adenocarcinoma of the ampulla of Vater demonstrate a broad range of outcomes, presumably because these cancers may arise from any one of the three epithelia that converge at that location. This variability poses challenges for clinical decision making and the development of novel therapeutic strategies. PATIENTS AND METHODS We assessed the potential clinical utility of histomolecular phenotypes defined using a combination of histopathology and protein expression (CDX2 and MUC1) in 208 patients from three independent cohorts who underwent surgical resection for adenocarcinoma of the ampulla of Vater. RESULTS Histologic subtype and CDX2 and MUC1 expression were significant prognostic variables. Patients with a histomolecular pancreaticobiliary phenotype (CDX2 negative, MUC1 positive) segregated into a poor prognostic group in the training (hazard ratio [HR], 3.34; 95% CI, 1.69 to 6.62; P < .001) and both validation cohorts (HR, 5.65; 95% CI, 2.77 to 11.5; P < .001 and HR, 2.78; 95% CI, 1.25 to 7.17; P = .0119) compared with histomolecular nonpancreaticobiliary carcinomas. Further stratification by lymph node (LN) status defined three clinically relevant subgroups: one, patients with histomolecular nonpancreaticobiliary (intestinal) carcinoma without LN metastases who had an excellent prognosis; two, those with histomolecular pancreaticobiliary carcinoma with LN metastases who had a poor outcome; and three, the remainder of patients (nonpancreaticobiliary, LN positive or pancreaticobiliary, LN negative) who had an intermediate outcome. CONCLUSION Histopathologic and molecular criteria combine to define clinically relevant histomolecular phenotypes of adenocarcinoma of the ampulla of Vater and potentially represent distinct diseases with significant implications for current therapeutic strategies, the ability to interpret past clinical trials, and future trial design.


PLOS ONE | 2012

qpure: A Tool to Estimate Tumor Cellularity from Genome-Wide Single-Nucleotide Polymorphism Profiles

Sarah Song; Katia Nones; David Miller; Ivon Harliwong; Karin S. Kassahn; Mark Pinese; Marina Pajic; Anthony J. Gill; Amber L. Johns; Matthew Anderson; Oliver Holmes; Conrad Leonard; Darrin Taylor; Scott Wood; Qinying Xu; Felicity Newell; Mark J. Cowley; Jianmin Wu; Peter Wilson; Lynn Fink; Andrew V. Biankin; Nic Waddell; Sean M. Grimmond; John V. Pearson

Tumour cellularity, the relative proportion of tumour and normal cells in a sample, affects the sensitivity of mutation detection, copy number analysis, cancer gene expression and methylation profiling. Tumour cellularity is traditionally estimated by pathological review of sectioned specimens; however this method is both subjective and prone to error due to heterogeneity within lesions and cellularity differences between the sample viewed during pathological review and tissue used for research purposes. In this paper we describe a statistical model to estimate tumour cellularity from SNP array profiles of paired tumour and normal samples using shifts in SNP allele frequency at regions of loss of heterozygosity (LOH) in the tumour. We also provide qpure, a software implementation of the method. Our experiments showed that there is a medium correlation 0.42 (-value = 0.0001) between tumor cellularity estimated by qpure and pathology review. Interestingly there is a high correlation 0.87 (-value 2.2e-16) between cellularity estimates by qpure and deep Ion Torrent sequencing of known somatic KRAS mutations; and a weaker correlation 0.32 (-value = 0.004) between IonTorrent sequencing and pathology review. This suggests that qpure may be a more accurate predictor of tumour cellularity than pathology review. qpure can be downloaded from https://sourceforge.net/projects/qpure/.


Gastroenterology | 2009

Expression of S100A2 Calcium-Binding Protein Predicts Response to Pancreatectomy for Pancreatic Cancer

Andrew V. Biankin; James G. Kench; Emily K. Colvin; Davendra Segara; Christopher J. Scarlett; Nam Q. Nguyen; David K. Chang; Adrienne Morey; C. Soon Lee; Mark Pinese; Samuel C.L. Kuo; Johana M. Susanto; Peter H. Cosman; Geoffrey J. Lindeman; Jane E. Visvader; Tuan V. Nguyen; Neil D. Merrett; Janindra Warusavitarne; Elizabeth A. Musgrove; Susan M. Henshall; Robert L. Sutherland

BACKGROUND & AIMS Current methods of preoperative staging and predicting outcome following pancreatectomy for pancreatic cancer (PC) are inadequate. We evaluated the utility of multiple biomarkers from distinct biologic pathways as potential predictive markers of response to pancreatectomy and patient survival. METHODS We assessed the relationship of candidate biomarkers known, or suspected, to be aberrantly expressed in PC, with disease-specific survival and response to therapy in a cohort of 601 patients. RESULTS Of the 17 candidate biomarkers examined, only elevated expression of S100A2 was an independent predictor of survival in both the training (n = 162) and validation sets (n = 439; hazard ratio [HR], 2.19; 95% confidence interval [CI]: 1.48-3.25; P < .0001) when assessed in a multivariate model with clinical variables. Patients with high S100A2 expressing tumors had no survival benefit with pancreatectomy compared with those with locally advanced disease, whereas those without high S100A2 expression had a survival advantage of 10.6 months (19.4 vs 8.8 months, respectively) and a HR of 3.23 (95% CI: 2.39-4.33; P < .0001). Of significance, patients with S100A2-negative tumors had a significant survival benefit from pancreatectomy even in the presence of involved surgical margins (median, 15.7 months; P = .0007) or lymph node metastases (median, 17.4 months; P = .0002). CONCLUSIONS S100A2 expression is a good predictor of response to pancreatectomy for PC and suggests that high S100A2 expression may be a marker of a metastatic phenotype. Prospective measurement of S100A2 expression in diagnostic biopsy samples has potential clinical utility as a predictive marker of response to pancreatectomy and other therapies that target locoregional disease.

Collaboration


Dive into the Mark Pinese's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark J. Cowley

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Marina Pajic

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Amber L. Johns

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elizabeth A. Musgrove

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Adnan Nagrial

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Anthony J. Gill

Kolling Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge