Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marina Pozzolini is active.

Publication


Featured researches published by Marina Pozzolini.


Biotechnology and Applied Biochemistry | 2001

Identification of an import signal for, and the nuclear localization of, human lactoferrin

Silvana Penco; Sonia Scarfì; Marco Giovine; Gianluca Damonte; Enrico Millo; Barbara Villaggio; Mario Passalacqua; Marina Pozzolini; Cecilia Garrè; Umberto Benatti

Many different unique functions have been attributed to lactoferrin (Lf), including DNA and RNA binding, and transport into the nucleus, where Lf binds to specific sequences and activates transcription. A pentapeptide, Gly‐Arg‐Arg‐Arg‐Arg, corresponding to a region of the N‐terminal portion of human Lf rich in basic amino acids, was synthesized and its intracellular localization was investigated. Peptide internalization was assayed using the rhodaminated form of the same molecule. This N‐terminal peptide sequence is able to be internalized within less than 10 min at concentration as low as 1 μM, and its intracellular localization is nuclear, mainly nucleolar. Similar behaviour was observed using peptides composed of either all l or d amino acids, the last one being a retro‐inverse peptide. The internalization process does not involve an endocytotic pathway, since no inhibition of the uptake was observed at 4 °C. The kinetics of peptide internalization was also evaluated. The internalization properties of such a short Lf pentapeptide have been assayed for its ability to transport peptide nucleic acids (PNAs) inside cells in order to improve their efficacy. The abundant transmembrane transport and nuclear localization of the proposed peptide, deriving from hLf and, for the first time, identified as a nuclear localization signal, could be used as an alternative strategy to tackle the unsolved problem of intracellular accumulation of antisense and antigene drugs and for the development of new pharmacological tools.


Biophysical Journal | 2004

Structural Characterization of Siliceous Spicules from Marine Sponges

Gianluca Croce; Alberto Frache; Marco Milanesio; Leonardo Marchese; Mauro Causà; Davide Viterbo; Alessia Barbaglia; Vera Bolis; Giorgio Bavestrello; Carlo Cerrano; Umberto Benatti; Marina Pozzolini; Marco Giovine; Heinz Amenitsch

Siliceous sponges, one of the few animal groups involved in a biosilicification process, deposit hydrated silica in discrete skeletal elements called spicules. A multidisciplinary analysis of the structural features of the protein axial filaments inside the spicules of a number of marine sponges, belonging to two different classes (Demospongiae and Hexactinellida), is presented, together with a preliminary analysis of the biosilicification process. The study was carried out by a unique combination of techniques: fiber diffraction using synchrotron radiation, scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetric (DSC), Fourier transform infrared spectroscopy (FTIR), and molecular modeling. From a phylogenetic point of view, the main result is the structural difference between the dimension and packing of the protein units in the spicule filaments of the Demospongiae and the Hexactinellida species. Models of the protein organization in the spicule axial filaments, consistent with the various experimental evidences, are given. The three different species of demosponges analyzed have similar general structural features, but they differ in the degree of order. The structural information on the spicule axial filaments can help shed some light on the still unknown molecular mechanisms controlling biosilicification.


Marine Biotechnology | 2004

Molecular Cloning of Silicatein Gene from Marine Sponge Petrosia ficiformis (Porifera, Demospongiae) and Development of Primmorphs as a Model for Biosilicification Studies

Marina Pozzolini; Laura Sturla; Carlo Cerrano; Giorgio Bavestrello; Laura Camardella; Anna Maria Parodi; Federica Raheli; Umberto Benatti; Werner E. G. Müller; Marco Giovine

In some sponges peculiar proteins called silicateins catalyze silica polymerization in ordered structures, and their study is of high interest for possible biotechnological applications in the nanostructure industry. In this work we describe the isolation and the molecular characterization of silicatein from spicules of Petrosia ficiformis, a common Mediterranean sponge, and the development of a cellular model (primmorphs) suitable for in vitro studies of silicatein gene regulation. The spicule of P. ficiformis contains an axial filament composed of 2 insoluble proteins, of 30 and 23 kDa. The 23-kDa protein was characterized, and the full-length cDNA was cloned. The putative amino acid sequence has high homology with previously described silicateins from other sponge species and also is very similar to cathepsins, a cystein protease family. Finally, P. ficiformis primmorphs express the silicatein gene, suggesting that they should be a good model for biosilicification studies.


FEBS Letters | 1999

Modified peptide nucleic acids are internalized in mouse macrophages RAW 264.7 and inhibit inducible nitric oxide synthase

Sonia Scarfì; Marco Giovine; Anna Gasparini; Gianluca Damonte; Enrico Millo; Marina Pozzolini; Umberto Benatti

Overexpression of inducible nitric oxide synthase causes the production of high levels of nitric oxide, which, under pathological conditions, leads to immunosuppression and tissue damage. The results recently obtained using peptide nucleic acids, rather than traditional oligonucleotides as antigen and antisense molecules, prompted us to test their efficacy in the regulation of nitric oxide production, thereby overcoming the obstacle of cellular internalization. The cellular permeability of four inducible nitric oxide synthase antisense peptide nucleic acids of different lengths was evaluated. These peptide nucleic acids were covalently linked to a hydrophobic peptide moiety to increase internalization and to a tyrosine to allow selective 125I radiolabelling. Internalization experiments showed a 3–25‐fold increase in the membrane permeability of the modified peptide nucleic acids with respect to controls. inducible nitric oxide synthase inhibition experiments on intact stimulated macrophages RAW 264.7 after passive permeation of the two antisense peptide nucleic acids 3 and 4 demonstrated a significant decrease (43–44%) in protein enzymatic activity with respect to the controls. These data offer a basis for developing a good alternative to conventional drugs directed against inducible nitric oxide synthase overexpression.


Respiratory Research | 2009

Ascorbic acid pre-treated quartz stimulates TNF-α release in RAW 264.7 murine macrophages through ROS production and membrane lipid peroxidation

Sonia Scarfì; Mirko Magnone; Chiara Ferraris; Marina Pozzolini; Federica Benvenuto; Umberto Benatti; Marco Giovine

BackgroundInhalation of crystalline silica induces a pulmonary fibrotic degeneration called silicosis caused by the inability of alveolar macrophages to dissolve the crystalline structure of phagocytosed quartz particles. Ascorbic acid is capable of partially dissolving quartz crystals, leading to an increase of soluble silica concentration and to the generation of new radical sites on the quartz surface. The reaction is specific for the crystalline forms of silica. It has been already demonstrated an increased cytotoxicity and stronger induction of pro-inflammatory cyclooxygenase-2 (COX-2) by ascorbic acid pre-treated quartz (QA) compared to untreated quartz (Q) in the murine macrophage cell line RAW 264.7.MethodsTaking advantage of the enhanced macrophage response to QA as compared to Q particles, we investigated the first steps of cell activation and the contribution of early signals generated directly from the plasma membrane to the production of TNF-α, a cytokine that activates both inflammatory and fibrogenic pathways.ResultsHere we demonstrate that TNF-α mRNA synthesis and protein secretion are significantly increased in RAW 264.7 macrophages challenged with QA as compared to Q particles, and that the enhanced response is due to an increase of intracellular ROS. Plasma membrane-particle contact, in the absence of phagocytosis, is sufficient to trigger TNF-α production through a mechanism involving membrane lipid peroxidation and this appears to be even more detrimental to macrophage survival than particle phagocytosis itself.ConclusionTaken together these data suggest that an impairment of pulmonary macrophage phagocytosis, i.e. in the case of alcoholic subjects, could potentiate lung disease in silica-exposed individuals.


FEBS Journal | 2007

Ascorbic acid-pretreated quartz enhances cyclo-oxygenase-2 expression in RAW 264.7 murine macrophages

Sonia Scarfì; Umberto Benatti; Marina Pozzolini; Emanuela Clavarino; Chiara Ferraris; Mirko Magnone; Laura Valisano; Marco Giovine

Exposure to quartz particles induces a pathological process named silicosis. Alveolar macrophages initiate the disease through their activation, which is the origin of the later dysfunctions. Ascorbic acid is known to selectively dissolve the quartz surface. During the reaction, ascorbic acid progressively disappears and hydroxyl radicals are generated from the quartz surface. These observations may be relevant to mammalian quartz toxicity, as substantial amounts of ascorbic acid are present in the lung epithelium. We studied the inflammatory response of the murine macrophage cell line RAW 264.7 incubated with ascorbic acid‐treated quartz, through the expression and activity of the enzyme cyclo‐oxygenase‐2 (COX‐2). COX‐2 expression and prostaglandin secretion were enhanced in cells incubated with ascorbic acid‐treated quartz. In contrast, no changes were observed in cells incubated with Aerosil OX50, an amorphous form of silica. Quantification of COX‐2 mRNA showed a threefold increase in cells incubated with ascorbic acid‐treated quartz compared with controls. The transcription factors, NF‐κB, pCREB and AP‐1, were all implicated in the increased inflammatory response. Reactive oxygen species (H2O2 and OH•) were involved in COX‐2 expression in this experimental model. Parallel experiments performed on rat alveolar macrophages from bronchoalveolar lavage confirmed the enhanced COX‐2 expression and activity in the cells incubated with ascorbic acid‐treated quartz compared with untreated quartz. In conclusion, the selective interaction with, and modification of, quartz particles by ascorbic acid may be a crucial event determining the inflammatory response of macrophages, which may subsequently develop into acute inflammation, eventually leading to the chronic pulmonary disease silicosis.


Toxicology and Industrial Health | 2002

Crystalline silica incubated in ascorbic acid acquires a higher cytotoxic potential.

Marco Giovine; Marina Pozzolini; Ivana Fenoglio; Sonia Scarfì; Mara Ghiazza; Umberto Benatti; Bice Fubini

Quartz incubated in an aqueous solution of ascorbic acid is partially dissolved and the potential to generate hydroxyl radicals from hydrogen peroxide is enhanced. In order to investigate whether the surface activation triggered by the treatment with ascorbic acid would also involve an enhancement in cell toxicity, a murine macrophage cell line (RAW 264.7) was exposed to untreated and ascorbic acid-treated quartz. Ascorbic acid pretreated quartz was more toxic than untreated quartz and all cells died within 24 hours after exposure. Tetrandrine (a Chinese drug employed to retard or reverse fibrotic lesions of silicosis in humans) partially reduced cell toxicity generated by ascorbic acid pretreated quartz.


Journal of Proteome Research | 2009

Primary structure and post-translational modifications of silicatein beta from the marine sponge Petrosia ficiformis (Poiret, 1789).

Andrea Armirotti; Gianluca Damonte; Marina Pozzolini; Francesca Mussino; Carlo Cerrano; Annalisa Salis; Umberto Benatti; Marco Giovine

Biosilica is an amazing example of natural order and complexity. Siliceous sponge spicules, in particular, are characterized by a large variety of dimensions and shapes, with an ultrastructure based on silica nanoparticles strictly packaged around an axial filament constituted by a family of proteins called silicateins. These peculiar proteins have a high sequence homology with cathepsins and they play a double role of enzyme and template in the control of biosilica precipitation. However, their natural structural organization inside the spicules is far from being understood in details. In this work, axial filaments extracted from spicules of Petrosia ficiformis have been extensively analyzed by mass spectrometry, exploiting MALDI and ESI analysis of both the intact protein and the peptides coming from digestion of the axial filament with different proteases. Results demonstrate that P. ficiformis spicules contain almost only silicatein beta. Several post-translational modifications, like methylations at the N-terminal region, three phosphorylation sites, and the oxidation of a histidine and of a cysteine to cysteic acid, are described.


Marine Biotechnology | 2013

Primmorphs cryopreservation: a new method for long-time storage of sponge cells.

Francesca Mussino; Marina Pozzolini; Laura Valisano; Carlo Cerrano; Umberto Benatti; Marco Giovine

The possibility to cryopreserve cells allows for wide opportunities of flexible handling of cell cultures from different sponge species. Primmorphs model, a multicellular 3D aggregate formed by dissociated sponge cells, is considered one of the best approaches to establish sponge cell culture but, in spite of the available protocols for freezing sponge cells, there is no information regarding the ability of the latter to form primmorphs after thawing. In the present work, we demonstrate that, after a freezing and thawing cycle using dissociated Petrosia ficiformis cells as a model, cells viability was high but it was not possible to obtain primmorphs. The same protocol for cryopreservation was then used to directly freeze primmorphs. In this second case, after thawing, viability and the cellular proliferative level were similar to unfrozen standard primmorphs. Spiculogenesis in thawed primmorphs was evaluated by quantifying the silicatein gene expression level and by assaying the silica amount in the newly formed spicules, then compared with the correspondent values obtained in standard unfrozen primmorphs. Results indicate that the freezing cycle does not affect the spiculogenesis rate. Finally, the expression level of heat shock protein 70, a well-known stress marker, was assayed and the results showed no differences between frozen and unfrozen samples. These findings are likely to promote relevant improvements in sponge cell culture technique, allowing for a worldwide exchange of living biological material, paving the way for cell banking of Porifera.


In Vitro Cellular & Developmental Biology – Animal | 2010

Influence of rocky substrata on three-dimensional sponge cells model development

Marina Pozzolini; Laura Valisano; Carlo Cerrano; Mattia Menta; Stefano Schiaparelli; Giorgio Bavestrello; Umberto Benatti; Marco Giovine

Many marine and freshwater organisms are rocky bottom dwellers, and the mineralogical composition of the substratum is known to potentially condition their biology and ecology. In this work, we propose the use of 3D sponge cellular aggregates, called primmorphs, as suitable models for a multidisciplinary study of the mechanisms which regulate the biological responses triggered by the contact with different inorganic substrata. In our experiments, primmorphs obtained from the marine sponge Petrosia ficiformis (Poiret, 1789) were reared on calcium carbonate or on quartzitic substrata, respectively, and their morphological development was described. In parallel, the quantitative expression levels of two genes, silicatein and heat shock protein 70 (HSP70), were evaluated. The first gene is strictly correlated to spiculogenesis and sponge growth, while the second is an important indicator of stress. The results achieved with this in vitro model clearly demonstrate that quartzitic substrata determine the increase of silicatein gene expression, a lower expression of HSP70 gene, and a remarkable difference in primmorphs morphology compared to the analogous samples grown on marble.

Collaboration


Dive into the Marina Pozzolini's collaboration.

Top Co-Authors

Avatar

Marco Giovine

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carlo Cerrano

Marche Polytechnic University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge