Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marina Rafajlović is active.

Publication


Featured researches published by Marina Rafajlović.


Journal of Evolutionary Biology | 2017

Interpreting the genomic landscape of speciation: a road map for finding barriers to gene flow

Mark Ravinet; Rui Faria; Roger K. Butlin; Juan Galindo; Nicolas Bierne; Marina Rafajlović; Mohamed A. F. Noor; B. Mehlig; Anja Marie Westram

Speciation, the evolution of reproductive isolation among populations, is continuous, complex, and involves multiple, interacting barriers. Until it is complete, the effects of this process vary along the genome and can lead to a heterogeneous genomic landscape with peaks and troughs of differentiation and divergence. When gene flow occurs during speciation, barriers restricting gene flow locally in the genome lead to patterns of heterogeneity. However, genomic heterogeneity can also be produced or modified by variation in factors such as background selection and selective sweeps, recombination and mutation rate variation, and heterogeneous gene density. Extracting the effects of gene flow, divergent selection and reproductive isolation from such modifying factors presents a major challenge to speciation genomics. We argue one of the principal aims of the field is to identify the barrier loci involved in limiting gene flow. We first summarize the expected signatures of selection at barrier loci, at the genomic regions linked to them and across the entire genome. We then discuss the modifying factors that complicate the interpretation of the observed genomic landscape. Finally, we end with a road map for future speciation research: a proposal for how to account for these modifying factors and to progress towards understanding the nature of barrier loci. Despite the difficulties of interpreting empirical data, we argue that the availability of promising technical and analytical methods will shed further light on the important roles that gene flow and divergent selection have in shaping the genomic landscape of speciation.


PLOS ONE | 2013

The Effect of Multiple Paternity on Genetic Diversity of Small Populations during and after Colonisation

Marina Rafajlović; Anders Eriksson; Anna Rimark; Sara Hintz-Saltin; Grégory Charrier; Marina Panova; Carl André; Kerstin Johannesson; Bernhard Mehlig

Genetic variation within and among populations is influenced by the genetic content of the founders and the migrants following establishment. This is particularly true if populations are small, migration rate low and habitats arranged in a stepping-stone fashion. Under these circumstances the level of multiple paternity is critical since multiply mated females bring more genetic variation into founder groups than single mated females. One such example is the marine snail Littorina saxatilis that during postglacial times has invaded mainland refuge areas and thereafter small islands emerging due to isostatic uplift by occasional rafting of multiply mated females. We modelled effects of varying degrees of multiple paternity on the genetic variation of island populations colonised by the founders spreading from the mainland, by quantifying the population heterozygosity during both the transient colonisation process, and after a steady state (with migration) has been reached. During colonisation, multiple mating by males increased the heterozygosity by in comparison with single paternity, while in the steady state the increase was compared with single paternity. In the steady state the increase of heterozygosity due to multiple paternity is determined by a corresponding increase in effective population size. During colonisation, by contrast, the increase in heterozygosity is larger and it cannot be explained in terms of the effective population size alone. During the steady-state phase bursts of high genetic variation spread through the system, and far from the mainland this led to short periods of high diversity separated by long periods of low diversity. The size of these fluctuations was boosted by multiple paternity. We conclude that following glacial periods of extirpation, recolonization of isolated habitats by this species has been supported by its high level of multiple paternity.


Theoretical Population Biology | 2014

Demography-adjusted tests of neutrality based on genome-wide SNP data.

Marina Rafajlović; Alexander Klassmann; Anders Eriksson; Thomas Wiehe; Bernhard Mehlig

Tests of the neutral evolution hypothesis are usually built on the standard null model which assumes that mutations are neutral and the population size remains constant over time. However, it is unclear how such tests are affected if the last assumption is dropped. Here, we extend the unifying framework for tests based on the site frequency spectrum, introduced by Achaz and Ferretti, to populations of varying size. Key ingredients are the first two moments of the site frequency spectrum. We show how these moments can be computed analytically if a population has experienced two instantaneous size changes in the past. We apply our method to data from ten human populations gathered in the 1000 genomes project, estimate their demographies and define demography-adjusted versions of Tajimas D, Fay & Wus H, and Zengs E. Our results show that demography-adjusted test statistics facilitate the direct comparison between populations and that most of the differences among populations seen in the original unadjusted tests can be explained by their underlying demographies. Upon carrying out whole-genome screens for deviations from neutrality, we identify candidate regions of recent positive selection. We provide track files with values of the adjusted and unadjusted tests for upload to the UCSC genome browser.


Genetics | 2012

Linkage Disequilibrium Under Recurrent Bottlenecks

Elke Schaper; Anders Eriksson; Marina Rafajlović; Serik Sagitov; Bernhard Mehlig

To model deviations from selectively neutral genetic variation caused by different forms of selection, it is necessary to first understand patterns of neutral variation. Best understood is neutral genetic variation at a single locus. But, as is well known, additional insights can be gained by investigating multiple loci. The resulting patterns reflect the degree of association (linkage) between loci and provide information about the underlying multilocus gene genealogies. The statistical properties of two-locus gene genealogies have been intensively studied for populations of constant size, as well as for simple demographic histories such as exponential population growth and single bottlenecks. By contrast, the combined effect of recombination and sustained demographic fluctuations is poorly understood. Addressing this issue, we study a two-locus Wright–Fisher model of a population subject to recurrent bottlenecks. We derive coalescent approximations for the covariance of the times to the most recent common ancestor at two loci in samples of two chromosomes. This covariance reflects the degree of association and thus linkage disequilibrium between these loci. We find, first, that an effective population-size approximation describes the numerically observed association between two loci provided that recombination occurs either much faster or much more slowly than the population-size fluctuations. Second, when recombination occurs frequently between but rarely within bottlenecks, we observe that the association of gene histories becomes independent of physical distance over a certain range of distances. Third, we show that in this case, a commonly used measure of linkage disequilibrium, σd2 (closely related to r^2), fails to capture the long-range association between two loci. The reason is that constituent terms, each reflecting the long-range association, cancel. Fourth, we analyze a limiting case in which the long-range association can be described in terms of a Xi coalescent allowing for simultaneous multiple mergers of ancestral lines.


PLOS ONE | 2016

Divergence within and among Seaweed Siblings (Fucus vesiculosus and F. radicans) in the Baltic Sea.

Angelica Ardehed; Daniel J.A. Johansson; Lisa Sundqvist; Ellen Schagerström; Zuzanna Zagrodzka; Nikolaj A. Kovaltchouk; Lena Bergström; Lena Kautsky; Marina Rafajlović; Ricardo T. Pereyra; Kerstin Johannesson

Closely related taxa provide significant case studies for understanding evolution of new species but may simultaneously challenge species identification and definition. In the Baltic Sea, two dominant and perennial brown algae share a very recent ancestry. Fucus vesiculosus invaded this recently formed postglacial sea 8000 years ago and shortly thereafter Fucus radicans diverged from this lineage as an endemic species. In the Baltic Sea both species reproduce sexually but also recruit fully fertile new individuals by asexual fragmentation. Earlier studies have shown local differences in morphology and genetics between the two taxa in the northern and western Bothnian Sea, and around the island of Saaremaa in Estonia, but geographic patterns seem in conflict with a single origin of F. radicans. To investigate the relationship between northern and Estonian distributions, we analysed the genetic variation using 9 microsatellite loci in populations from eastern Bothnian Sea, Archipelago Sea and the Gulf of Finland. These populations are located in between earlier studied populations. However, instead of bridging the disparate genetic gap between N-W Bothnian Sea and Estonia, as expected from a simple isolation-by-distance model, the new populations substantially increased overall genetic diversity and showed to be strongly divergent from the two earlier analysed regions, showing signs of additional distinct populations. Contrasting earlier findings of increased asexual recruitment in low salinity in the Bothnian Sea, we found high levels of sexual reproduction in some of the Gulf of Finland populations that inhabit extremely low salinity. The new data generated in this study supports the earlier conclusion of two reproductively isolated but very closely related species. However, the new results also add considerable genetic and morphological complexity within species. This makes species separation at geographic scales more demanding and suggests a need for more comprehensive approaches to further disentangle the intriguing relationship and history of the Baltic Sea fucoids.


Genetics | 2010

The Total Branch Length of Sample Genealogies in Populations of Variable Size

Anders Eriksson; Bernhard Mehlig; Marina Rafajlović; Serik Sagitov

We consider neutral evolution of a large population subject to changes in its population size. For a population with a time-variable carrying capacity we study the distribution of the total branch lengths of its sample genealogies. Within the coalescent approximation we have obtained a general expression—Equation 20—for the moments of this distribution with a given arbitrary dependence of the population size on time. We investigate how the frequency of population-size variations alters the total branch length.


Journal of Evolutionary Biology | 2017

Neutral processes forming large clones during colonization of new areas

Marina Rafajlović; David Kleinhans; Christian Gulliksson; Johan Fries; Daniel J.A. Johansson; Angelica Ardehed; Lisa Sundqvist; Ricardo T. Pereyra; B. Mehlig; Per R. Jonsson; Kerstin Johannesson

In species reproducing both sexually and asexually clones are often more common in recently established populations. Earlier studies have suggested that this pattern arises due to natural selection favouring generally or locally successful genotypes in new environments. Alternatively, as we show here, this pattern may result from neutral processes during species’ range expansions. We model a dioecious species expanding into a new area in which all individuals are capable of both sexual and asexual reproduction, and all individuals have equal survival rates and dispersal distances. Even under conditions that favour sexual recruitment in the long run, colonization starts with an asexual wave. After colonization is completed, a sexual wave erodes clonal dominance. If individuals reproduce more than one season, and with only local dispersal, a few large clones typically dominate for thousands of reproductive seasons. Adding occasional long‐distance dispersal, more dominant clones emerge, but they persist for a shorter period of time. The general mechanism involved is simple: edge effects at the expansion front favour asexual (uniparental) recruitment where potential mates are rare. Specifically, our model shows that neutral processes (with respect to genotype fitness) during the population expansion, such as random dispersal and demographic stochasticity, produce genotype patterns that differ from the patterns arising in a selection model. The comparison with empirical data from a post‐glacially established seaweed species (Fucus radicans) shows that in this case, a neutral mechanism is strongly supported.


Evolution | 2016

A universal mechanism generating clusters of differentiated loci during divergence-with-migration.

Marina Rafajlović; Anna Emanuelsson; Kerstin Johannesson; Roger K. Butlin; Bernhard Mehlig

Genome‐wide patterns of genetic divergence reveal mechanisms of adaptation under gene flow. Empirical data show that divergence is mostly concentrated in narrow genomic regions. This pattern may arise because differentiated loci protect nearby mutations from gene flow, but recent theory suggests this mechanism is insufficient to explain the emergence of concentrated differentiation during biologically realistic timescales. Critically, earlier theory neglects an inevitable consequence of genetic drift: stochastic loss of local genomic divergence. Here, we demonstrate that the rate of stochastic loss of weak local differentiation increases with recombination distance to a strongly diverged locus and, above a critical recombination distance, local loss is faster than local “gain” of new differentiation. Under high migration and weak selection, this critical recombination distance is much smaller than the total recombination distance of the genomic region under selection. Consequently, divergence between populations increases by net gain of new differentiation within the critical recombination distance, resulting in tightly linked clusters of divergence. The mechanism responsible is the balance between stochastic loss and gain of weak local differentiation, a mechanism acting universally throughout the genome. Our results will help to explain empirical observations and lead to novel predictions regarding changes in genomic architectures during adaptive divergence.


Evolution Letters | 2018

Clines on the seashore: The genomic architecture underlying rapid divergence in the face of gene flow

Anja Marie Westram; Marina Rafajlović; Pragya Chaube; Rui Faria; Tomas Larsson; Marina Panova; Mark Ravinet; Anders Blomberg; Bernhard Mehlig; Kerstin Johannesson; Roger K. Butlin

Adaptive divergence and speciation may happen despite opposition by gene flow. Identifying the genomic basis underlying divergence with gene flow is a major task in evolutionary genomics. Most approaches (e.g., outlier scans) focus on genomic regions of high differentiation. However, not all genomic architectures potentially underlying divergence are expected to show extreme differentiation. Here, we develop an approach that combines hybrid zone analysis (i.e., focuses on spatial patterns of allele frequency change) with system‐specific simulations to identify loci inconsistent with neutral evolution. We apply this to a genome‐wide SNP set from an ideally suited study organism, the intertidal snail Littorina saxatilis, which shows primary divergence between ecotypes associated with different shore habitats. We detect many SNPs with clinal patterns, most of which are consistent with neutrality. Among non‐neutral SNPs, most are located within three large putative inversions differentiating ecotypes. Many non‐neutral SNPs show relatively low levels of differentiation. We discuss potential reasons for this pattern, including loose linkage to selected variants, polygenic adaptation and a component of balancing selection within populations (which may be expected for inversions). Our work is in line with theory predicting a role for inversions in divergence, and emphasizes that genomic regions contributing to divergence may not always be accessible with methods purely based on allele frequency differences. These conclusions call for approaches that take spatial patterns of allele frequency change into account in other systems.


Nature Ecology and Evolution | 2018

What genomic data can reveal about eco-evolutionary dynamics

Seth M. Rudman; Matthew Barbour; Katalin Csilléry; Phillip Gienapp; Frédéric Guillaume; Nelson G. Hairston; Andrew P. Hendry; Jesse R. Lasky; Marina Rafajlović; Paul S. Schmidt; Ole Seehausen; Nina O. Therkildsen; Martin M. Turcotte; Jonathan M. Levine

Collaboration


Dive into the Marina Rafajlović's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rui Faria

University of Sheffield

View shared research outputs
Top Co-Authors

Avatar

Daniel J.A. Johansson

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge