Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marina Scalia is active.

Publication


Featured researches published by Marina Scalia.


Free Radical Biology and Medicine | 1991

In vitro scavenger activity of some flavonoids and melanins against O2−dot

Giovanni Sichel; Concetta Corsaro; Marina Scalia; Angel J. Di Bilio; Raffaele P. Bonomo

The scavenger activity against O2-. of some flavonoids and melanins (synthetic melanins and melanins isolated from animal tissues, vegetable seeds, and mushroom spores) has been studied by ESR spectrometry. All these substances, except flavon and flavanone, diminish the signal of O2-. generated in vitro by a system containing H2O2 and acetone in an alkaline medium. It is shown that the presence of hydroxyl groups in the B ring of flavonoids is essential for their scavenger activity. Moreover, the presence of a hydroxyl at C-3 enhances the scavenger ability of flavonoids. Generally, aglycons are more active than their glycosides. It seems plausible that the antioxidant property of these substances comes from their scavenger activity against O2-(.). It is also pointed out that the scavenger activity shown by melanins, is strictly correlated with their nature of stable free radical.


Molecular Cancer Therapeutics | 2010

Specific Alterations of MicroRNA Transcriptome and Global Network Structure in Colorectal Carcinoma after Cetuximab Treatment

Marco Ragusa; Alessandra Majorana; Luisa Statello; Marco Maugeri; Loredana Salito; Davide Barbagallo; Maria Rosa Guglielmino; Laura R Duro; Rosario Angelica; Rosario Caltabiano; Antonio Biondi; Maria Di Vita; Giuseppe Privitera; Marina Scalia; Alessandro Cappellani; Enrico Vasquez; Salvatore Lanzafame; Francesco Basile; Cinzia Di Pietro; Michele Purrello

The relationship between therapeutic response and modifications of microRNA (miRNA) transcriptome in colorectal cancer (CRC) remains unknown. We investigated this issue by profiling the expression of 667 miRNAs in 2 human CRC cell lines, one sensitive and the other resistant to cetuximab (Caco-2 and HCT-116, respectively), through TaqMan real-time PCR. Caco-2 and HCT-116 expressed different sets of miRNAs after treatment. Specifically, 21 and 22 miRNAs were differentially expressed in Caco-2 or HCT-116, respectively (t test, P < 0.01). By testing the expression of differentially expressed miRNAs in CRC patients, we found that miR-146b-3p and miR-486-5p are more abundant in K-ras–mutated samples with respect to wild-type ones (Wilcoxon test, P < 0.05). Sixty-seven percent of differentially expressed miRNAs were involved in cancer, including CRC, whereas 19 miRNA targets had been previously reported to be involved in the cetuximab pathway and CRC. We identified 25 transcription factors putatively controlling these miRNAs, 11 of which have been already reported to be involved in CRC. On the basis of these data, we suggest that the downregulation of let-7b and let-7e (targeting K-ras) and the upregulation of miR-17* (a CRC marker) could be considered as candidate molecular markers of cetuximab resistance. Global network functional analysis (based on miRNA targets) showed a significant overrepresentation of cancer-related biological processes and networks centered on critical nodes involved in epidermal growth factor receptor internalization and ubiquitin-mediated degradation. The identification of miRNAs, whose expression is linked to the efficacy of therapy, should allow the ability to predict the response of patients to treatment and possibly lead to a better understanding of the molecular mechanisms of drug response. Mol Cancer Ther; 9(12); 3396–409.


Journal of Molecular Medicine | 2012

Specific alterations of the microRNA transcriptome and global network structure in colorectal cancer after treatment with MAPK/ERK inhibitors

Marco Ragusa; Luisa Statello; Marco Maugeri; Alessandra Majorana; Davide Barbagallo; Loredana Salito; Mariangela Sammito; Manuela Santonocito; Rosario Angelica; Andrea Cavallaro; Marina Scalia; Rosario Caltabiano; Giuseppe Privitera; Antonio Biondi; Maria Di Vita; Alessandro Cappellani; Enrico Vasquez; Salvatore Lanzafame; Elisabetta Tendi; Salvatore Celeste; Cinzia Di Pietro; Francesco Basile; Michele Purrello

The mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway has a master control role in various cancer-related biological processes as cell growth, proliferation, differentiation, migration, and apoptosis. It also regulates many transcription factors that control microRNAs (miRNAs) and their biosynthetic machinery. To investigate on the still poorly characterised global involvement of miRNAs within the pathway, we profiled the expression of 745 miRNAs in three colorectal cancer (CRC) cell lines after blocking the pathway with three different inhibitors. This allowed the identification of two classes of post-treatment differentially expressed (DE) miRNAs: (1) common DE miRNAs in all CRC lines after treatment with a specific inhibitor (class A); (2) DE miRNAs in a single CRC line after treatment with all three inhibitors (class B). By determining the molecular targets, biological roles, network position of chosen miRNAs from class A (miR-372, miR-663b, miR-1226*) and class B (miR-92a-1*, miR-135b*, miR-720), we experimentally demonstrated that they are involved in cell proliferation, migration, apoptosis, and globally affect the regulation circuits centred on MAPK/ERK signaling. Interestingly, the levels of miR-92a-1*, miR-135b*, miR-372, miR-720 are significantly higher in biopsies from CRC patients than in normal controls; they also are significantly higher in CRC patients with mutated KRAS than in those with wild-type genotypes (Wilcoxon test, p < 0.05): the latter could be a downstream effect of ERK pathway overactivation, triggered by KRAS mutations. Finally, our functional data strongly suggest the following miRNA/target pairs: miR-92a-1*/PTEN-SOCS5; miR-135b*/LATS2; miR-372/TXNIP; miR-663b/CCND2. Altogether, these results contribute to deepen current knowledge on still uncharacterized features of MAPK/ERK pathway, pinpointing new oncomiRs in CRC and allowing their translation into clinical practice and CRC therapy.


Journal of Anatomy | 2000

Characterisation of Kupffer cells in some Amphibia

Concetta Corsaro; Marina Scalia; Nicola Leotta; Filippo Mondio; Giovanni Sichel

A study on the Kupffer cells (KCs) of Amphibia was undertaken in order to compare these cells with those of endothermic animals. Liver tissue and isolated and cultured KCs were studied by light microscopy and by transmission and scanning electron microscopy. We have shown that amphibian KCs can be divided into 2 principal types: ‘small’ and ‘large’. Both cell types possess the distinctive KC morphology. They show nonspecific esterase activity, weak endogenous peroxidase activity in the nuclear envelope and in the rough endoplasmic reticulum, and the ability to engulf naturally present cell debris or experimentally administered zymosan or latex particles. The principal difference between the small and the large cells consists in the substantial quantity of inclusion bodies that exist only in the latter. We conclude that amphibian KCs, apart from their ability to build melanosomes and synthesise melanins, are very similar to mammalian KCs.


Journal of Molecular Medicine | 2010

MIR152, MIR200B, and MIR338, human positional and functional neuroblastoma candidates, are involved in neuroblast differentiation and apoptosis

Marco Ragusa; Alessandra Majorana; Barbara Banelli; Davide Barbagallo; Luisa Statello; Ida Casciano; Maria Rosa Guglielmino; Laura R Duro; Marina Scalia; Gaetano Magro; Cinzia Di Pietro; Massimo Romani; Michele Purrello

MicroRNAs (MIRs) perform critical regulatory functions within cell networks, both in physiology as well as in pathology. Through the positional gene candidate approach, we have identified three MIRs (MIR152, MIR200B, and MIR338) that are located in regions frequently altered in neuroblastoma (NB) and target mRNAs encoding proteins involved in cell proliferation, neuroblast differentiation, neuroblast migration, and apoptosis. Expression analysis in NB biopsies and NB cell lines showed that these MIRs are dysregulated. We have characterized a CpG island, close to the gene encoding MIR200B and hypermethylated in NB samples, that explains its negative regulation. Expression of MIR152, MIR200B, and MIR338 is specifically modulated in NB cell lines during differentiation and apoptosis. Functional genomic experiments through enforced expression of MIR200B and knockdown of MIR152 resulted in a significant decrease of the invasion activity of SH-SY5Y cells. Reconstruction of a NB network comprising MIR152, MIR200B, and MIR338 allowed us to confirm their role in the control of NB cell stemness and apoptosis: This suggests that altered regulation of these MIRs could have a role in NB pathogenesis by interfering with the molecular mechanisms, which physiologically control differentiation and death of neuroblasts. Accordingly, they could be considered as new NB biomarkers and potential targets of antagomirs or epigenetic therapies.


Comparative Biochemistry and Physiology B | 1988

The extracutaneous pigmentary system: evidence for the melanosynthesis in Amphibia and Reptilia liver

Marina Scalia; Ernesto Geremia; Concetta Corsaro; Carmen Santoro; Sebastiano Sciuto; Giovanni Sichel

Abstract 1. 1. In vitro incorporations of [ 14 C] l -tyrosine and [ 14 C] l -DOPA into purified melanin, extracted from frog and turtle liver after incubation of surviving tissue and purified melanosomes were measured. 2. 2. The results show an incorporation of labelled precursors in melanin both in incubating tissue slices and incubating isolated melanosomes and that the radioactivity detected in purified melanin was not due to an adsorption or binding phenomenon of labelled tyrosine. 3. 3. We conclude that melanins occurring in the pigment cells of Amphibia and Reptilia liver originate from the melanosynthetic activity of Kupffer cells and that these pigment cells are to be considered as belonging to the extracutaneous pigmentary system.


BMC Medical Genomics | 2009

The apoptotic machinery as a biological complex system: analysis of its omics and evolution, identification of candidate genes for fourteen major types of cancer, and experimental validation in CML and neuroblastoma

Cinzia Di Pietro; Marco Ragusa; Davide Barbagallo; Laura R Duro; Maria Rosa Guglielmino; Alessandra Majorana; Rosario Angelica; Marina Scalia; Luisa Statello; Loredana Salito; Luisa Tomasello; Salvo Pernagallo; Salvo Valenti; Vito D'Agostino; Patrizio Triberio; Igor Tandurella; Giuseppe A. Palumbo; Piera La Cava; Viviana Cafiso; Taschia Bertuccio; Maria Santagati; Giovanni Li Destri; Salvatore Lanzafame; Francesco Di Raimondo; Stefania Stefani; Bud Mishra; Michele Purrello

BackgroundApoptosis is a critical biological phenomenon, executed under the guidance of the Apoptotic Machinery (AM), which allows the physiologic elimination of terminally differentiated, senescent or diseased cells. Because of its relevance to BioMedicine, we have sought to obtain a detailed characterization of AM Omics in Homo sapiens, namely its Genomics and Evolution, Transcriptomics, Proteomics, Interactomics, Oncogenomics, and Pharmacogenomics.MethodsThis project exploited the methodology commonly used in Computational Biology (i.e., mining of many omics databases of the web) as well as the High Throughput biomolecular analytical techniques.ResultsIn Homo sapiens AM is comprised of 342 protein-encoding genes (possessing either anti- or pro-apoptotic activity, or a regulatory function) and 110 MIR-encoding genes targeting them: some have a critical role within the system (core AM nodes), others perform tissue-, pathway-, or disease-specific functions (peripheral AM nodes). By overlapping the cancer type-specific AM mutation map in the fourteen most frequent cancers in western societies (breast, colon, kidney, leukaemia, liver, lung, neuroblastoma, ovary, pancreas, prostate, skin, stomach, thyroid, and uterus) to their transcriptome, proteome and interactome in the same tumour type, we have identified the most prominent AM molecular alterations within each class. The comparison of the fourteen mutated AM networks (both protein- as MIR-based) has allowed us to pinpoint the hubs with a general and critical role in tumour development and, conversely, in cell physiology: in particular, we found that some of these had already been used as targets for pharmacological anticancer therapy. For a better understanding of the relationship between AM molecular alterations and pharmacological induction of apoptosis in cancer, we examined the expression of AM genes in K562 and SH-SY5Y after anticancer treatment.ConclusionWe believe that our data on the Apoptotic Machinery will lead to the identification of new cancer genes and to the discovery of new biomarkers, which could then be used to profile cancers for diagnostic purposes and to pinpoint new targets for pharmacological therapy. This approach could pave the way for future studies and applications in molecular and clinical Medicine with important perspectives both for Oncology as for Regenerative Medicine.


Cellular Microbiology | 2013

VEGF receptor-1 involvement in pericyte loss induced by Escherichia coli in an in vitro model of blood brain barrier

Mario Salmeri; Carla Motta; Carmelina Daniela Anfuso; Andrea Amodeo; Marina Scalia; Maria Antonietta Toscano; Mario Alberghina; Gabriella Lupo

The key aspect of neonatal meningitis is related to the ability of pathogens to invade the blood–brain barrier (BBB) and to penetrate the central nervous system. In the present study we show that, in an in vitro model of BBB, on the basis of co‐culturing primary bovine brain endothelial cells (BBEC) and primary bovine retinal pericytes (BRPC), Escherichia coli infection determines changes of transendothelial electrical resistance (TEER) and permeability (Pe) to sodium fluorescein. In the co‐culture model, within BBEC, bacteria are able to stimulate cytosolic and Ca2+‐independent phospholipase A2 (cPLA2 and iPLA2) enzyme activities. In supernatants of E. coli‐stimulated co‐cultures, an increase in prostaglandins (PGE2) and VEGF production in comparison with untreated co‐cultures were found. Incubation with E. coli in presence of AACOCF3 or BEL caused a decrease of PGE2 and VEGF release. SEM and TEM images of BBEC and BRPC showed E. coli adhesion to BBEC and BRPC but only in BBEC the invasion occurs. VEGFR‐1 but not VEGFR‐2 blockade by the specific antibody reduced E. coli invasion in BBEC. In our model of BBB infection, a significant loss of BRPC was observed. Following VEGFR‐1, but not VEGFR‐2 blockade, or in presence of AACOCF3 or BEL, elevated TEER values, reducedpermeability and BRPC loss were found. These data suggest that VEGFR‐1 negatively regulates BRPC survival and its blockade protects the barrier integrity. PGs and VEGF could exert a biological effect on BBB, probably by BRPC coverage ablation, thus increasing BBB permeability. Our results show the role played by the BBEC as well as BRPC during a bacterial attack on BBB. A better understanding of the mechanisms by which E. coli enter the nervous system and how bacteria alter the communication between endothelial cells and pericytes may provide exciting new insight for clinical intervention.


computational systems bioinformatics | 2003

Anticlustal: multiple sequence alignment by antipole clustering and linear approximate 1-median computation

C. Di Pietro; V. Di Pietro; Giovanni Emmanuele; Alfredo Ferro; T. Maugeri; E. Modica; Giuseppe Pigola; Alfredo Pulvirenti; Michele Purrello; Maria Alessandra Ragusa; Marina Scalia; Dennis E. Shasha; Salvo Travali; V. Zimmitti

In this paper we present a new multiple sequence alignment (MSA) algorithm called AntiClustAl. The method makes use of the commonly used idea of aligning homologous sequences belonging to classes generated by some clustering algorithm, and then continue the alignment process in a bottom-up way along a suitable tree structure. The final result is then read at the root of the tree. Multiple sequence alignment in each cluster makes use of the progressive alignment with the 1-median (center) of the cluster. The 1-median of set S of sequences is the element of S which minimizes the average distance from any other sequence in S. Its exact computation requires quadratic time. The basic idea of our proposed algorithm is to make use of a simple and natural algorithmic technique based on randomised tournaments which has been successfully applied to large size search problems in general metric spaces. In particular a clustering algorithm called antipole tree and an approximate linear 1-median computation are used. Our algorithm compared with Clustal W, a widely used tool to MSA, shows a better running time results with fully comparable alignment quality. A successful biological application showing high amino acid conservation during evolution of Xenopus laevis SOD2 is also cited.


Neurochemical Research | 2013

PARP-1 Inhibitors DPQ and PJ-34 Negatively Modulate Proinflammatory Commitment of Human Glioblastoma Cells

Marina Scalia; Cristina Satriano; Rossana Greca; Anna Maria Giuffrida Stella; Enrico Rizzarelli; Vittoria Spina-Purrello

Poly(ADP-ribose) polymerases (PARPs) are recognized as key regulators of cell survival or death. PARP-1 is essential to the repair of DNA single-strand breaks via the base excision repair pathway. The enzyme may be overactivated in response to inflammatory cues, thus depleting cellular energy pools and eventually causing cell death. Accordingly, PARP-1 inhibitors, acting by competing with its physiological substrate NAD+, have been proposed to play a protective role in a wide range of inflammatory and ischemia/reperfusion—associated diseases. Recently, it has also been reported that PARP-1 regulates proinflammatory mediators, including cytokines, chemokines, adhesion molecules, and enzymes (e.g., iNOS). Furthermore, PARP-1 has been shown to act as a coactivator of NF-κB- and other transcription factors implicated in stress/inflammation, as AP-1, Oct-1, SP-1, HIF, and Stat-1. To further substantiate this hypothesis, we tested the biomolecular effects of PARP-1 inhibitors DPQ and PJ-34 on human glioblastoma cells, induced to a proinflammatory state with lipopolysaccharide and Interferon-γ. PARP-1 expression was evaluated by laser scanning confocal microscopy immunofluorescence (LSM); nitrite production, LDH release and cell viability were also determined. LSM of A-172, SNB-19 and CAS-1 cells demonstrated that DPQ and PJ-34 downregulate PARP-1 expression; they also cause a decrease of LDH release and nitrite production, while increasing cell viability. Similar effects were caused in all three cell lines by N-mono-methyl-arginine, a well known iNOS inhibitor, and by l-carnosine and trehalose, two antioxidant molecules. These results demonstrate that, similar to other well characterized drugs, DPQ and PJ-34 reduce cell inflammation and damage that follow PARP-1 overexpression, while they increase cell survival: this suggests their potential exploitation in clinical Medicine.

Collaboration


Dive into the Marina Scalia's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge