Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marina Y. Fosso is active.

Publication


Featured researches published by Marina Y. Fosso.


Human Molecular Genetics | 2009

Delivery of a read-through inducing compound, TC007, lessens the severity of a spinal muscular atrophy animal model

Virginia B. Mattis; Allison D. Ebert; Marina Y. Fosso; Cheng-Wei Tom Chang; Christian L. Lorson

Spinal muscular atrophy (SMA) is the leading genetic cause of infant mortality and is caused by the loss of a functional SMN1 gene. In humans, there exists a nearly-identical copy gene known as SMN2 that encodes an identical protein as SMN1, but differs by a silent C to T transition within exon 7. This single nucleotide difference produces an alternatively spliced isoform, SMNDelta7, which encodes a rapidly degraded protein. The absence of the short peptide encoded by SMN exon 7 is critical in the disease development process; however, heterologous sequences can partially compensate for the SMN exon 7 peptide in several cellular assays. Consistent with this, aminoglycosides, compounds that can suppress efficient recognition of stop codons, resulted in significantly increased levels of SMN protein in SMA patient fibroblasts. We now examine the potential therapeutic capabilities of a novel aminoglycoside, TC007. In an intermediate SMA model (Smn-/-; SMN2+/+; SMNDelta7), when delivered directly to the central nervous system (CNS), TC007 induces SMN in both the brain and spinal cord, significantly increases lifespan ( approximately 30%) and increases ventral horn cell number, consistent with its ability to increase SMN levels in induced pluripotent stem cell-derived human SMA motor neuron cultures. Collectively, these experiments are the first in vivo examination of therapeutics for SMA designed to induce read-through of the SMNDelta7 stop codon to show increased benefit by direct administration to the CNS.


Antimicrobial Agents and Chemotherapy | 2015

Amphiphilic tobramycin analogues as antibacterial and antifungal agents

Sanjib K. Shrestha; Marina Y. Fosso; Keith D. Green; Sylvie Garneau-Tsodikova

ABSTRACT In this study, we investigated the in vitro antifungal activities, cytotoxicities, and membrane-disruptive actions of amphiphilic tobramycin (TOB) analogues. The antifungal activities were established by determination of MIC values and in time-kill studies. Cytotoxicity was evaluated in mammalian cell lines. The fungal membrane-disruptive action of these analogues was studied by using the membrane-impermeable dye propidium iodide. TOB analogues bearing a linear alkyl chain at their 6″-position in a thioether linkage exhibited chain length-dependent antifungal activities. Analogues with C12 and C14 chains showed promising antifungal activities against tested fungal strains, with MIC values ranging from 1.95 to 62.5 mg/liter and 1.95 to 7.8 mg/liter, respectively. However, C4, C6, and C8 TOB analogues and TOB itself exhibited little to no antifungal activity. Fifty percent inhibitory concentrations (IC50s) for the most potent TOB analogues (C12 and C14) against A549 and Beas 2B cells were 4- to 64-fold and 32- to 64-fold higher, respectively, than their antifungal MIC values against various fungi. Unlike conventional aminoglycoside antibiotics, TOB analogues with alkyl chain lengths of C12 and C14 appear to inhibit fungi by inducing apoptosis and disrupting the fungal membrane as a novel mechanism of action. Amphiphilic TOB analogues showed broad-spectrum antifungal activities with minimal mammalian cell cytotoxicity. This study provides novel lead compounds for the development of antifungal drugs.


Scientific Reports | 2015

A combination approach to treating fungal infections

Sanjib K. Shrestha; Marina Y. Fosso; Sylvie Garneau-Tsodikova

Azoles are antifungal drugs used to treat fungal infections such as candidiasis in humans. Their extensive use has led to the emergence of drug resistance, complicating antifungal therapy for yeast infections in critically ill patients. Combination therapy has become popular in clinical practice as a potential strategy to fight resistant fungal isolates. Recently, amphiphilic tobramycin analogues, C12 and C14, were shown to display antifungal activities. Herein, the antifungal synergy of C12 and C14 with four azoles, fluconazole (FLC), itraconazole (ITC), posaconazole (POS), and voriconazole (VOR), was examined against seven Candida albicans strains. All tested strains were synergistically inhibited by C12 when combined with azoles, with the exception of C. albicans 64124 and MYA-2876 by FLC and VOR. Likewise, when combined with POS and ITC, C14 exhibited synergistic growth inhibition of all C. albicans strains, except C. albicans MYA-2876 by ITC. The combinations of FLC-C14 and VOR-C14 showed synergistic antifungal effect against three C. albicans and four C. albicans strains, respectively. Finally, synergism between C12/C14 and POS were confirmed by time-kill and disk diffusion assays. These results suggest the possibility of combining C12 or C14 with azoles to treat invasive fungal infections at lower administration doses or with a higher efficiency.


The Journal of Antibiotics | 2010

Antibacterial to antifungal conversion of neamine aminoglycosides through alkyl modification. Strategy for reviving old drugs into agrofungicides

Cheng-Wei Tom Chang; Marina Y. Fosso; Yukie Kawasaki; Sanjib K. Shrestha; Mekki Bensaci; Jinhua Wang; Conrad K. Evans; Jon Y. Takemoto

Many Actinomycetes aminoglycosides are widely used antibiotics. Although mainly antibacterials, a few known aminoglycosides also inhibit yeasts, protozoans and important crop pathogenic fungal oomycetes. Here we show that attachment of a C8 alkyl chain to ring III of a neamine-based aminoglycoside specifically at the 4″-O position yields a broad-spectrum fungicide (FG08) without the antibacterial properties typical for aminoglycosides. Leaf infection assays and greenhouse studies show that FG08 is capable of suppressing wheat fungal infections by Fusarium graminearum—the causative agent of Fusarium head blight—at concentrations that are minimally phytotoxic. Unlike typical aminoglycoside action of ribosomal protein translation miscoding, FG08s antifungal action involves perturbation of the plasma membrane. This antibacterial to antifungal transformation could pave the way for the development of a new class of aminoglycoside-based fungicides suitable for use in crop disease applications. In addition, this strategy is an example of reviving a clinically obsolete drug by simple chemical modification to yield a new application.


Journal of Medicinal Chemistry | 2015

Synthesis and Bioactivities of Kanamycin B-Derived Cationic Amphiphiles.

Marina Y. Fosso; Sanjib K. Shrestha; Keith D. Green; Sylvie Garneau-Tsodikova

Cationic amphiphiles derived from aminoglycosides (AGs) have been shown to exhibit enhanced antimicrobial activity. Through the attachment of hydrophobic residues such as linear alkyl chains on the AG backbone, interesting antibacterial and antifungal agents with a novel mechanism of action have been developed. Herein, we report the design and synthesis of seven kanamycin B (KANB) derivatives. Their antibacterial and antifungal activities, along with resistance/enzymatic, hemolytic, and cytotoxicity assays were also studied. Two of these compounds, with a C12 and C14 aliphatic chain attached at the 6″-position of KANB through a thioether linkage, exhibited good antibacterial and antifungal activity, were poorer substrates than KANB for several AG-modifying enzymes, and could delay the development of resistance in bacteria and fungi. Also, they were both relatively less hemolytic than the known membrane targeting antibiotic gramicidin and the known antifungal agent amphotericin B and were not toxic at their antifungal MIC values. Their oxidation to sulfones was also demonstrated to have no effect on their activities. Moreover, they both acted synergistically with posaconazole, an azole currently used in the treatment of human fungal infections.


PLOS ONE | 2013

Membrane Lipid-Modulated Mechanism of Action and Non-Cytotoxicity of Novel Fungicide Aminoglycoside FG08

Sanjib K. Shrestha; Michelle Grilley; Marina Y. Fosso; Cheng-Wei Tom Chang; Jon Y. Takemoto

A novel aminoglycoside, FG08, that differs from kanamycin B only by a C8 alkyl chain at the 4″-O position, was previously reported. Unlike kanamycin B, FG08 shows broad-spectrum fungicidal but not anti-bacterial activities. To understand its specificity for fungi, the mechanism of action of FG08 was studied using intact cells of the yeast Saccharomyces cerevisiae and small unilamellar membrane vesicles. With exposure to FG08 (30 µg mL−1), 8-fold more cells were stained with fluorescein isothiocyanate, cells had 4 to 6-fold higher K+ efflux rates, and 18-fold more cells were stained with SYTOX Green in comparison to exposure to kanamycin B (30 µg mL−1). Yeast mutants with aberrant membrane sphingolipids (no sphingoid base C4 hydroxyl group, truncated very long fatty acid chain, or lacking the terminal phosphorylinositol group of mannosyl-diinositolphosphorylphytoceramide were 4 to 8-fold less susceptible to growth inhibition with FG08 and showed 2 to 10-fold lower SYTOX Green dye uptake rates than did the isogenic wild-type strain. FG08 caused leakage of pre-loaded calcein from 50% of small unilamellar vesicles with glycerophospholipid and sterol compositions that mimic the compositions of fungal plasma membranes. Less than 5 and 10% of vesicles with glycerophospholipid and sterol compositions that mimic bacterial and mammalian cell plasma membranes, respectively, showed calcein leakage. In tetrazolium dye cytotoxicity tests, mammalian cell lines NIH3T3 and C8161.9 showed FG08 toxicity at concentrations that were 10 to 20-fold higher than fungicidal minimal inhibitory concentrations. It is concluded that FG08’s growth inhibitory specificity for fungi lie in plasma membrane permeability changes involving mechanisms that are modulated by membrane lipid composition.


Journal of Organic Chemistry | 2015

Structure–Activity Relationships for Antibacterial to Antifungal Conversion of Kanamycin to Amphiphilic Analogues

Marina Y. Fosso; Madher N. AlFindee; Qian Zhang; Vincent de Paul N. Nziko; Yukie Kawasaki; Sanjib K. Shrestha; Jeremiah Bearss; Rylee Gregory; Jon Y. Takemoto; Cheng-Wei Tom Chang

Novel fungicides are urgently needed. It was recently reported that the attachment of an octyl group at the O-4″ position of kanamycin B converts this antibacterial aminoglycoside into a novel antifungal agent. To elucidate the structure-activity relationship (SAR) for this phenomenon, a lead compound FG03 with a hydroxyl group replacing the 3″-NH2 group of kanamycin B was synthesized. FG03s antifungal activity and synthetic scheme inspired the synthesis of a library of kanamycin B analogues alkylated at various hydroxyl groups. SAR studies of the library revealed that for antifungal activity the O-4″ position is the optimal site for attaching a linear alkyl chain and that the 3″-NH2 and 6″-OH groups of the kanamycin B parent molecule are not essential for antifungal activity. The discovery of lead compound, FG03, is an example of reviving clinically obsolete drugs like kanamycin by simple chemical modification and an alternative strategy for discovering novel antimicrobials.


BMC Neuroscience | 2009

Subcutaneous administration of TC007 reduces disease severity in an animal model of SMA

Virginia B. Mattis; Marina Y. Fosso; Cheng-Wei Tom Chang; Christian L. Lorson

BackgroundSpinal Muscular Atrophy (SMA) is the leading genetic cause of infantile death. It is caused by the loss of functional Survival Motor Neuron 1 (SMN1). There is a nearly identical copy gene, SMN2, but it is unable to rescue from disease due to an alternative splicing event that excises a necessary exon (exon 7) from the majority of SMN2-derived transcripts. While SMNΔ7 protein has severely reduced functionality, the exon 7 sequences may not be specifically required for all activities. Therefore, aminoglycoside antibiotics previously shown to suppress stop codon recognition and promote translation read-through have been examined to increase the length of the SMNΔ7 C-terminus.ResultsHere we demonstrate that subcutaneous-administration of a read-through inducing compound (TC007) to an intermediate SMA model (Smn-/-; SMN2+/+; SMNΔ7) had beneficial effects on muscle fiber size and gross motor function.ConclusionDelivery of the read-through inducing compound TC007 reduces the disease-associated phenotype in SMA mice, however, does not significantly extend survival.


ACS Combinatorial Science | 2012

Library synthesis and antibacterial investigation of cationic anthraquinone analogs.

Marina Y. Fosso; Ka Yee Chan; Rylee Gregory; Cheng-Wei Tom Chang

We report the parallel synthesis of a series of novel 4,9-dioxo-4,9-dihydro-1H-naphtho[2,3-d][1,2,3]triazol-3-ium chloride salts, which are analogs to cationic anthraquinones. Three synthetic protocols were examined leading to a convenient and facile library synthesis of the cationic anthraquinone analogs that contain double alkyl chains of various lengths (C(2)-C(12)) at N-1 and N-3 positions. The antibacterial activities of these compounds were evaluated against Gram-positive bacterium Staphylococcus aureus and Gram-negative bacterium Escherichia coli. The antibacterial activities of these compounds were expected to be associated with the structural features of naphthoquinone, cation and lypophilic alkyl chain and, interestingly, they showed much higher levels of antibacterial activities against G+ than G- bacteria. In addition, when the total number of carbon atoms of the alkyl groups at both N-1 and N-3 positions lies between 9 and 18, the bactericidal activity against S. aureus increased with increasing alkyl chain length at both N-atoms with MIC ≤ 1 μg/mL.


European Journal of Medicinal Chemistry | 2014

Synthesis and anticancer structure activity relationship investigation of cationic anthraquinone analogs

Jaya P. Shrestha; Marina Y. Fosso; Jeremiah Bearss; Cheng-Wei Tom Chang

We have synthesized a series of novel 4,9-dioxo-4,9-dihydro-1H-naphtho[2,3-d][1,2,3]triazol-3-ium salts, which can be viewed as analogs of cationic anthraquinones. Unlike the similar analogs that we have reported previously, these compounds show relatively weak antibacterial activities but exert strong anticancer activities (low μM to nM GI50), in particular, against melanoma, colon cancer, non-small cell lung cancer and central nervous system (CNS) cancer. These compounds are structurally different from their predecessors by having the aromatic group, instead of alkyl chains, directly attached to the cationic anthraquinone scaffold. Further investigation in the structure-activity relationship (SAR) reveals the significant role of electron donating substituents on the aromatic ring in enhancing the anticancer activities via resonance effect. Steric hindrance of these groups is disadvantageous but is less influential than the resonance effect. The difference in the attached groups at N-1 position of the cationic anthraquinone analog is the main structural factor for the switching of biological activity from antibacterial to anticancer. The discovery of these compounds may lead to the development of novel cancer chemotherapeutics.

Collaboration


Dive into the Marina Y. Fosso's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge