Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sanjib K. Shrestha is active.

Publication


Featured researches published by Sanjib K. Shrestha.


Antimicrobial Agents and Chemotherapy | 2015

Amphiphilic tobramycin analogues as antibacterial and antifungal agents

Sanjib K. Shrestha; Marina Y. Fosso; Keith D. Green; Sylvie Garneau-Tsodikova

ABSTRACT In this study, we investigated the in vitro antifungal activities, cytotoxicities, and membrane-disruptive actions of amphiphilic tobramycin (TOB) analogues. The antifungal activities were established by determination of MIC values and in time-kill studies. Cytotoxicity was evaluated in mammalian cell lines. The fungal membrane-disruptive action of these analogues was studied by using the membrane-impermeable dye propidium iodide. TOB analogues bearing a linear alkyl chain at their 6″-position in a thioether linkage exhibited chain length-dependent antifungal activities. Analogues with C12 and C14 chains showed promising antifungal activities against tested fungal strains, with MIC values ranging from 1.95 to 62.5 mg/liter and 1.95 to 7.8 mg/liter, respectively. However, C4, C6, and C8 TOB analogues and TOB itself exhibited little to no antifungal activity. Fifty percent inhibitory concentrations (IC50s) for the most potent TOB analogues (C12 and C14) against A549 and Beas 2B cells were 4- to 64-fold and 32- to 64-fold higher, respectively, than their antifungal MIC values against various fungi. Unlike conventional aminoglycoside antibiotics, TOB analogues with alkyl chain lengths of C12 and C14 appear to inhibit fungi by inducing apoptosis and disrupting the fungal membrane as a novel mechanism of action. Amphiphilic TOB analogues showed broad-spectrum antifungal activities with minimal mammalian cell cytotoxicity. This study provides novel lead compounds for the development of antifungal drugs.


Scientific Reports | 2015

A combination approach to treating fungal infections

Sanjib K. Shrestha; Marina Y. Fosso; Sylvie Garneau-Tsodikova

Azoles are antifungal drugs used to treat fungal infections such as candidiasis in humans. Their extensive use has led to the emergence of drug resistance, complicating antifungal therapy for yeast infections in critically ill patients. Combination therapy has become popular in clinical practice as a potential strategy to fight resistant fungal isolates. Recently, amphiphilic tobramycin analogues, C12 and C14, were shown to display antifungal activities. Herein, the antifungal synergy of C12 and C14 with four azoles, fluconazole (FLC), itraconazole (ITC), posaconazole (POS), and voriconazole (VOR), was examined against seven Candida albicans strains. All tested strains were synergistically inhibited by C12 when combined with azoles, with the exception of C. albicans 64124 and MYA-2876 by FLC and VOR. Likewise, when combined with POS and ITC, C14 exhibited synergistic growth inhibition of all C. albicans strains, except C. albicans MYA-2876 by ITC. The combinations of FLC-C14 and VOR-C14 showed synergistic antifungal effect against three C. albicans and four C. albicans strains, respectively. Finally, synergism between C12/C14 and POS were confirmed by time-kill and disk diffusion assays. These results suggest the possibility of combining C12 or C14 with azoles to treat invasive fungal infections at lower administration doses or with a higher efficiency.


The Journal of Antibiotics | 2010

Antibacterial to antifungal conversion of neamine aminoglycosides through alkyl modification. Strategy for reviving old drugs into agrofungicides

Cheng-Wei Tom Chang; Marina Y. Fosso; Yukie Kawasaki; Sanjib K. Shrestha; Mekki Bensaci; Jinhua Wang; Conrad K. Evans; Jon Y. Takemoto

Many Actinomycetes aminoglycosides are widely used antibiotics. Although mainly antibacterials, a few known aminoglycosides also inhibit yeasts, protozoans and important crop pathogenic fungal oomycetes. Here we show that attachment of a C8 alkyl chain to ring III of a neamine-based aminoglycoside specifically at the 4″-O position yields a broad-spectrum fungicide (FG08) without the antibacterial properties typical for aminoglycosides. Leaf infection assays and greenhouse studies show that FG08 is capable of suppressing wheat fungal infections by Fusarium graminearum—the causative agent of Fusarium head blight—at concentrations that are minimally phytotoxic. Unlike typical aminoglycoside action of ribosomal protein translation miscoding, FG08s antifungal action involves perturbation of the plasma membrane. This antibacterial to antifungal transformation could pave the way for the development of a new class of aminoglycoside-based fungicides suitable for use in crop disease applications. In addition, this strategy is an example of reviving a clinically obsolete drug by simple chemical modification to yield a new application.


Journal of Medicinal Chemistry | 2015

Synthesis and Bioactivities of Kanamycin B-Derived Cationic Amphiphiles.

Marina Y. Fosso; Sanjib K. Shrestha; Keith D. Green; Sylvie Garneau-Tsodikova

Cationic amphiphiles derived from aminoglycosides (AGs) have been shown to exhibit enhanced antimicrobial activity. Through the attachment of hydrophobic residues such as linear alkyl chains on the AG backbone, interesting antibacterial and antifungal agents with a novel mechanism of action have been developed. Herein, we report the design and synthesis of seven kanamycin B (KANB) derivatives. Their antibacterial and antifungal activities, along with resistance/enzymatic, hemolytic, and cytotoxicity assays were also studied. Two of these compounds, with a C12 and C14 aliphatic chain attached at the 6″-position of KANB through a thioether linkage, exhibited good antibacterial and antifungal activity, were poorer substrates than KANB for several AG-modifying enzymes, and could delay the development of resistance in bacteria and fungi. Also, they were both relatively less hemolytic than the known membrane targeting antibiotic gramicidin and the known antifungal agent amphotericin B and were not toxic at their antifungal MIC values. Their oxidation to sulfones was also demonstrated to have no effect on their activities. Moreover, they both acted synergistically with posaconazole, an azole currently used in the treatment of human fungal infections.


PLOS ONE | 2013

Membrane Lipid-Modulated Mechanism of Action and Non-Cytotoxicity of Novel Fungicide Aminoglycoside FG08

Sanjib K. Shrestha; Michelle Grilley; Marina Y. Fosso; Cheng-Wei Tom Chang; Jon Y. Takemoto

A novel aminoglycoside, FG08, that differs from kanamycin B only by a C8 alkyl chain at the 4″-O position, was previously reported. Unlike kanamycin B, FG08 shows broad-spectrum fungicidal but not anti-bacterial activities. To understand its specificity for fungi, the mechanism of action of FG08 was studied using intact cells of the yeast Saccharomyces cerevisiae and small unilamellar membrane vesicles. With exposure to FG08 (30 µg mL−1), 8-fold more cells were stained with fluorescein isothiocyanate, cells had 4 to 6-fold higher K+ efflux rates, and 18-fold more cells were stained with SYTOX Green in comparison to exposure to kanamycin B (30 µg mL−1). Yeast mutants with aberrant membrane sphingolipids (no sphingoid base C4 hydroxyl group, truncated very long fatty acid chain, or lacking the terminal phosphorylinositol group of mannosyl-diinositolphosphorylphytoceramide were 4 to 8-fold less susceptible to growth inhibition with FG08 and showed 2 to 10-fold lower SYTOX Green dye uptake rates than did the isogenic wild-type strain. FG08 caused leakage of pre-loaded calcein from 50% of small unilamellar vesicles with glycerophospholipid and sterol compositions that mimic the compositions of fungal plasma membranes. Less than 5 and 10% of vesicles with glycerophospholipid and sterol compositions that mimic bacterial and mammalian cell plasma membranes, respectively, showed calcein leakage. In tetrazolium dye cytotoxicity tests, mammalian cell lines NIH3T3 and C8161.9 showed FG08 toxicity at concentrations that were 10 to 20-fold higher than fungicidal minimal inhibitory concentrations. It is concluded that FG08’s growth inhibitory specificity for fungi lie in plasma membrane permeability changes involving mechanisms that are modulated by membrane lipid composition.


Journal of Organic Chemistry | 2015

Structure–Activity Relationships for Antibacterial to Antifungal Conversion of Kanamycin to Amphiphilic Analogues

Marina Y. Fosso; Madher N. AlFindee; Qian Zhang; Vincent de Paul N. Nziko; Yukie Kawasaki; Sanjib K. Shrestha; Jeremiah Bearss; Rylee Gregory; Jon Y. Takemoto; Cheng-Wei Tom Chang

Novel fungicides are urgently needed. It was recently reported that the attachment of an octyl group at the O-4″ position of kanamycin B converts this antibacterial aminoglycoside into a novel antifungal agent. To elucidate the structure-activity relationship (SAR) for this phenomenon, a lead compound FG03 with a hydroxyl group replacing the 3″-NH2 group of kanamycin B was synthesized. FG03s antifungal activity and synthetic scheme inspired the synthesis of a library of kanamycin B analogues alkylated at various hydroxyl groups. SAR studies of the library revealed that for antifungal activity the O-4″ position is the optimal site for attaching a linear alkyl chain and that the 3″-NH2 and 6″-OH groups of the kanamycin B parent molecule are not essential for antifungal activity. The discovery of lead compound, FG03, is an example of reviving clinically obsolete drugs like kanamycin by simple chemical modification and an alternative strategy for discovering novel antimicrobials.


Frontiers in Microbiology | 2014

Antifungal amphiphilic aminoglycoside K20: bioactivities and mechanism of action

Sanjib K. Shrestha; Cheng-Wei Tom Chang; Nicole Meissner; John Oblad; Jaya P. Shrestha; Kevin N. Sorensen; Michelle Grilley; Jon Y. Takemoto

K20 is a novel amphiphilic antifungal aminoglycoside that is synthetically derived from the antibiotic kanamycin A. Reported here are investigations of K20′s antimicrobial activities, cytotoxicity, and fungicidal mechanism of action. In vitro growth inhibitory activities against a variety of human and plant pathogenic yeasts, filamentous fungi, and bacteria were determined using microbroth dilution assays and time-kill curve analyses, and hemolytic and animal cell cytotoxic activities were determined. Effects on Cryptococcus neoformans H-99 infectivity were determined with a preventive murine lung infection model. The antifungal mechanism of action was studied using intact fungal cells, yeast lipid mutants, and small unilamellar lipid vesicles. K20 exhibited broad-spectrum in vitro antifungal activities but not antibacterial activities. Pulmonary, single dose-administration of K20 reduced C. neoformans lung infection rates 4-fold compared to controls. Hemolysis and half-maximal cytotoxicities of mammalian cells occurred at concentrations that were 10 to 32-fold higher than fungicidal MICs. With fluorescein isothiocyanate (FITC), 20–25 mg/L K20 caused staining of >95% of C. neoformans and Fusarium graminearum cells and at 31.3 mg/L caused rapid leakage (30–80% in 15 min) of calcein from preloaded small unilamellar lipid vesicles. K20 appears to be a broad-spectrum fungicide, capable of reducing the infectivity of C. neoformans, and exhibits low hemolytic activity and mammalian cell toxicity. It perturbs the plasma membrane by mechanisms that are lipid modulated. K20 is a novel amphiphilic aminoglycoside amenable to scalable production and a potential lead antifungal for therapeutic and crop protection applications.


Bioorganic & Medicinal Chemistry | 2016

Synthesis and investigation of novel benzimidazole derivatives as antifungal agents

Nishad Thamban Chandrika; Sanjib K. Shrestha; Huy X. Ngo; Sylvie Garneau-Tsodikova

The rise and emergence of resistance to antifungal drugs by diverse pathogenic fungal strains have resulted in an increase in demand for new antifungal agents. Various heterocyclic scaffolds with different mechanisms of action against fungi have been investigated in the past. Herein, we report the synthesis and antifungal activities of 18 alkylated mono-, bis-, and trisbenzimidazole derivatives, their toxicities against mammalian cells, as well as their ability to induce reactive oxygen species (ROS) in yeast cells. Many of our bisbenzimidazole compounds exhibited moderate to excellent antifungal activities against all tested fungal strains, with MIC values ranging from 15.6 to 0.975μg/mL. The fungal activity profiles of our bisbenzimidazoles were found to be dependent on alkyl chain length. Our most potent compounds were found to display equal or superior antifungal activity when compared to the currently used agents amphotericin B, fluconazole, itraconazole, posaconazole, and voriconazole against many of the strains tested.


Medical Mycology | 2015

In vitro antifungal synergy between amphiphilic aminoglycoside K20 and azoles against Candida species and Cryptococcus neoformans

Sanjib K. Shrestha; Michelle Grilley; Thomas Anderson; Christine Dhiman; John Oblad; Cheng-Wei Tom Chang; Kevin N. Sorensen; Jon Y. Takemoto

Several azoles are widely used to treat human fungal infections. Increasing resistance to these azoles has prompted exploration of their synergistic antifungal activities when combined with other agents. The amphiphilic aminoglycoside, K20, was recently shown to inhibit filamentous fungi, yeasts and heterokonts, but not bacteria. In this study, in vitro synergistic growth inhibition by combinations of K20 and azoles (fluconazole, itraconazole, voriconazole, clotrimazole, or posaconazole) were examined against Candida species and Cryptococcus neoformans. Checkerboard microbroth dilution, time-kill curve, and disk diffusion assays revealed that K20 has synergistic inhibitory activities with all five azoles against C. albicans including azole-resistant C. albicans strains ATCC 64124 and ATCC 10231. Four (fluconazole, itraconazole, clotrimazole, posaconazole) and three (fluconazole, itraconazole, voriconazole) azoles were synergistically inhibitory with K20 against C. lusitaniae and C. tropicalis, respectively. Only posaconazole showed synergy with K20 against two Cryptococcus neoformans strains (90-26 and VR-54). Time-kill curves with azole-resistant C. albicans 64124 and azole-sensitive C. albicans MYA-2876 confirmed the K20-azole synergistic interactions with a ≥ 2 log10 decrease in colony-forming units (CFU)/ml compared with the corresponding azoles alone. These results suggest that combinations of K20 and azoles offer a possible strategy for developing therapies against candidiasis.


ChemMedChem | 2016

Identification of Ebsulfur Analogues with Broad-Spectrum Antifungal Activity.

Huy X. Ngo; Sanjib K. Shrestha; Sylvie Garneau-Tsodikova

Invasive fungal infections are on the rise due to an increased population of critically ill patients as a result of HIV infections, chemotherapies, and organ transplantations. Current antifungal drugs are helpful, but are insufficient in addressing the problem of drug‐resistant fungal infections. Thus, there is a growing need for novel antimycotics that are safe and effective. The ebselen scaffold has been evaluated in clinical trials and has been shown to be safe in humans. This makes ebselen an attractive scaffold for facile translation from bench to bedside. We recently reported a library of ebselen‐inspired ebsulfur analogues with antibacterial properties, but their antifungal activity has not been characterized. In this study, we repurposed ebselen, ebsulfur, and 32 additional ebsulfur analogues as antifungal agents by evaluating their antifungal activity against a panel of 13 clinically relevant fungal strains. The effect of induction of reactive oxygen species (ROS) by three of these compounds was evaluated. Their hemolytic and cytotoxicity activities were also determined using mouse erythrocytes and mammalian cells. The MIC values of these compounds were found to be in the range of 0.02–12.5 μg mL−1 against the fungal strains tested. Notably, yeast cells treated with our compounds showed an accumulation of ROS, which may further contribute to the growth‐inhibitory effect against fungi. This study provides new lead compounds for the development of antimycotic agents.

Collaboration


Dive into the Sanjib K. Shrestha's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Huy X. Ngo

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge