Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mario A. Moscarello is active.

Publication


Featured researches published by Mario A. Moscarello.


The Journal of Neuroscience | 2006

Increased Citrullination of Histone H3 in Multiple Sclerosis Brain and Animal Models of Demyelination: A Role for Tumor Necrosis Factor-Induced Peptidylarginine Deiminase 4 Translocation

Fabrizio G. Mastronardi; D. Denise Wood; Jiang Mei; Reinout Raijmakers; Vivian Tseveleki; Hans-Michael Dosch; Lesley Probert; Patrizia Casaccia-Bonnefil; Mario A. Moscarello

Modification of arginine residues by citrullination is catalyzed by peptidylarginine deiminases (PADs), of which five are known, generating irreversible protein structural modifications. We have shown previously that enhanced citrullination of myelin basic protein contributed to destabilization of the myelin membrane in the CNS of multiple sclerosis (MS) patients. We now report increased citrullination of nucleosomal histones by PAD4 in normal-appearing white matter (NAWM) of MS patients and in animal models of demyelination. Histone citrullination was attributable to increased levels and activity of nuclear PAD4. PAD4 translocation into the nucleus was attributable to elevated tumor necrosis factor-α (TNF-α) protein. The elevated TNF-α in MS NAWM was not associated with CD3+ or CD8+ lymphocytes, nor was it associated with CD68+ microglia/macrophages. GFAP, a measure of astrocytosis, was the only cytological marker that was consistently elevated in the MS NAWM, suggesting that TNF-α may have been derived from astrocytes. In cell cultures of mouse and human oligodendroglial cell lines, PAD4 was predominantly cytosolic but TNF-α treatment induced its nuclear translocation. To address the involvement of TNF-α in targeting PAD4 to the nucleus, we found that transgenic mice overexpressing TNF-α also had increased levels of citrullinated histones and elevated nuclear PAD4 before demyelination. In conclusion, high citrullination of histones consequent to PAD4 nuclear translocation is part of the process that leads to irreversible changes in oligodendrocytes and may contribute to apoptosis of oligodendrocytes in MS.


Journal of Neuroscience Research | 2007

Peptidyl argininedeiminase 2 CpG island in multiple sclerosis white matter is hypomethylated

Fabrizio G. Mastronardi; Abdul Noor; D. Denise Wood; Tara Paton; Mario A. Moscarello

In previous studies, we documented increased citrullinated myelin basic protein (MBP) was present in MBP isolated from multiple sclerosis (MS) normal appearing white matter (NAWM). This increase was due to the myelin enzyme peptidyl argininedeiminase 2 (PAD2). In this study, we show that methylation of cytosine of the PAD2 promoter in DNA from MS NAWM was decreased to one‐third of the level of that in DNA from normal white matter. The PAD2 promoter in DNA from thymus obtained from the same MS patients and white matter DNA from Alzheimers, Huntingtons, and Parkinsons was not hypomethylated. DNA demethylase activity in supernatants prepared from NAWM of MS patients was 2‐fold higher than the DNA demethylase from normal, Alzheimers, Huntingtons and Parkinsons disease white matter. The amount of PAD2 enzyme and citrullinated MBP was increased in MS NAWM. The decreased methylation of cytosines in the PAD2 promoter may explain the increased synthesis of PAD2 protein that is responsible for the increased amount of citrullinated MBP, which in turn results in loss of myelin stability in MS brain.


Journal of Biological Chemistry | 1995

Participation of Acetylpseudouridine in the Synthesis of a Peptide Bond in Vitro

D. Denise Wood; Henrianna Pang; Andrew Hempel; Norman Camerman; Byron G. Lane; Mario A. Moscarello

Uracil, uridine, and pseudouridine were acetylated by refluxing in acetic anhydride, and the products of acetylation were incubated with a synthetic peptide(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21) that corresponds to the N-terminal 21 amino acid residues of human myelin basic protein. Peptide bond formation, at the N terminus in peptide 1-21, was obtained with acetyluracil and acetylpseudouridine, but not with acetyluridine. Transfer of an acetyl group from acetyluracil and acetylpseudouridine depended on acetylation in the N-heterocycle. X-ray crystallographic analysis definitively established N-1 as the site of acetylation in acetyluracil. Mass spectrometry of the acetylation products showed that one acetyl group was transferred to peptide 1-21, in water, by either acetyluracil or acetylpseudouridine at pH 6. Release of the acetyl group by acylaminopeptidase regenerated peptide 1-21 (mass spectrometry) and automated sequencing (for five cycles) of the regenerated (deacetylated) peptide demonstrated that the N terminus was intact. The findings are discussed in the context of a possible role for pseudouridine in ribosome-catalyzed peptidyltransfer, with particular reference being made to similarities between the possible mechanism of acyl transfer by acetyluracil/pseudouridine and the mechanism of carboxyl transfer by carboxylbiotin in acetyl CoA carboxylase. The possibility that idiosyncratic appearance of a wide range of acyl substituents in myelin basic protein could be related to a peculiar involvement of ribosomal pseudouridine is mentioned.


Journal of Neurochemistry | 2002

Peptidylarginine deiminase: a candidate factor in demyelinating disease

Mario A. Moscarello; L. Pritzker; Fabrizio G. Mastronardi; D. D. Wood

In earlier studies we demonstrated that an increase in the relative amounts of citrullinated myelin basic protein (MBP) was found in multiple sclerosis ( Moscarello et al. 1994 ). To determine the temporal relationship between the citrullinated MBP and peptidylarginine deiminase (PAD), the enzyme responsible for deiminating arginyl residues in proteins, we studied enzyme activity, enzyme protein, PAD mRNA in a spontaneously demyelinating transgenic mouse model and we correlated the amount of PAD with citrullinated MBP. Both PAD protein as measured in an immunoslot blot method and PAD RNA were elevated. In fractionation studies we showed that the increase in PAD enzyme was due to an increase in the PAD found in membrane fractions and not the soluble PAD (PADII). From our data we concluded that up‐regulation of myelin‐associated PAD was responsible for the increase in citrullinated MBP in our transgenic mice prior to onset of clinical or pathological signs of demyelination. We postulate that a similar mechanism may be responsible for the increase in citrullinated MBP in multiple sclerosis.


Biochimica et Biophysica Acta | 1974

Interaction of a hydrophobic protein with liposomes evidence for particles seen in freeze fracture as being proteins

William J. Vail; Demetrios Papahadjopoulos; Mario A. Moscarello

Abstract Freeze fractures of liposome membranes showed a smooth fracture surface while liposomes into which a hydrophobic protein from human myelin had been incorporated showed a particulate fracture surface. The evidence suggests that at least some of the analogous particles present on fracture surfaces of biological membranes could be proteins, embedded in a phospholipid bilayer.


Journal of Neuropathology and Experimental Neurology | 1991

Localization of the CD44 glycoprotein to fibrous astrocytes in normal white matter and to reactive astrocytes in active lesions in multiple sclerosis.

Nigel Girgrah; Michelle Letarte; Laurence E. Becker; Tony F. Cruz; Elizabeth Theriault; Mario A. Moscarello

The CD44 antigen is a proteoglycan recently implicated in several adhesion events including that of lymphocytes to endothelium. The CD44 antigen, reactive with monoclonal antibody (MAb) 44D10, has been shown previously to be expressed in normal human white matter homogenates and to be found at higher concentrations in brain homogenates of victims of multiple sclerosis (MS). The cellular localization of CD44 in human brain of normal individuals and in those afflicted with MS has now been determined. Monoclonal antibody 44D10 reacted with astrocyte-like cells in 40 μm thick paraformaldehyde-fixed sections but not in thin (6 μm) fixed sections. A double labeling experiment performed on a frozen brain section with MAb 44D10 and rabbit anti-glial fibrillary acidic protein (GFAP), a cytoplasmic marker of astrocytes, confirmed the co-localization of these two antigens. The reactivity with brain tissue sections of a rabbit antiserum produced against lymphocyte- CD44 could be absorbed by a preparation of the CD44 glycoprotein, purified 2,100-fold from a white matter homogenate. The antiserum was shown by Western blot analysis to be specific for p80 glycoprotein in brain extracts derived from normal and MS patients. This antibody reacted with fibrous astrocytes predominantly in white matter; staining was also noted in subependymal and subpial regions. Inhibition studies using a cellular radioimmunoassay indicated that the highest concentrations of CD44 in three MS victims were found in plaques, followed by periplaques and non-involved areas of white matter which were higher than normal white matter. Reactive astrocytes, identified in active lesions, expressed high levels of CD44 on their surfaces. Thus, CD44 is associated with astrocytes in human brain and the increased expression observed in MS brain may reflect activation and/or proliferation of astrocytes implicated in the pathogenesis of this disease.


Journal of Neurochemistry | 1993

Deimination of Human Myelin Basic Protein by a Peptidylarginine Deiminase from Bovine Brain

John W. E. Lamensa; Mario A. Moscarello

Abstract: A peptidylarginine deiminase (PAD; EC 3.5.3.15) has been isolated from bovine brain and some of its characteristics have been studied. The enzyme showed an absolute requirement for Ca2+, a temperature optimum at ∼50°C, and two Kmvalues when benzoylarginine ethyl ester was used as substrate, 0.78 mMand 11.2 mM.The higher Kmhas not been reported previously. Protein substrates for the enzyme included polyarginine and myelin basic protein but not histones. Because one of the components of MBP contains six citrullinyl residues per mole, enzymic deimination appeared to be a likely mechanism. When the most cationic component (C‐1) was subjected to PAD in solution, 17 of the 19 arginyl residues were modified. From sequence analyses we concluded that the nature of the amino acid residues adjacent to the deiminated arginine were not modifiers of the reaction as arginyl residues in a variety of environments were deiminated. This deimination was reflected in a large increase in random structure, as measured by [θ]200. At 5°C, the [θ]200of the deiminated protein was ‐70 × 103 compared with ‐30 × 103 deg cm2/dmol for the native protein. When the temperature was increased to 70°C, the [θ]200 was ‐44 × 103 for the deiminated protein and ‐20 × 107 deg cm2/ dmol for the native C‐1. When plotted as a function of temperature, [θ]200 decreased linearly from 5°C to 50°C for both proteins and did not change from 50°C to 70°C. PAD provides a mechanism for deimination of arginyl residues of myelin basic protein. The selective deimination of the six arginyl residues that are consistently found deiminated in C‐8 may be determined by the orientation of the protein in the membrane and/or the more complex lipid composition of myelin may affect the selectivity of the deimination.


Laboratory Investigation | 2008

Myelin localization of peptidylarginine deiminases 2 and 4: comparison of PAD2 and PAD4 activities

Dorothy D Wood; Cameron Ackerley; Ben van den Brand; Li Zhang; Reinout Raijmakers; Fabrizio G. Mastronardi; Mario A. Moscarello

An understanding of the structure and composition of the myelin sheath is essential to understand the pathogenesis of demyelinating diseases such as multiple sclerosis (MS). The presence of citrulline in myelin proteins in particular myelin basic protein (MBP) causes an important change in myelin structure, which destabilizes myelin. The peptidylarginine deiminases (PADs) are responsible for converting arginine in proteins to citrulline. Two of these, PAD2 and PAD4, were localized to the myelin sheath by immunogold electron microscopy. Deimination of MBP by the recombinant forms of these enzymes showed that it was extensive, that is, PAD2 deiminated 18 of 19 arginyl residues in MBP, whereas PAD4 deiminated 14 of 19 residues. In the absence of PAD2 (the PAD2-knockout mouse) PAD4 remained active with limited deimination of arginyl residues. In myelin isolated from patients with MS, the amounts of both PAD2 and PAD4 enzymes were increased compared with that in normals, and the citrullinated proteins were also increased. These data support the view that an increase in citrullinated proteins resulting from increased PAD2 and 4 is an important change in the pathogenesis of MS.


Disease Models & Mechanisms | 2008

Peptidylarginine deiminase 2 (PAD2) overexpression in transgenic mice leads to myelin loss in the central nervous system

Abdiwahab A. Musse; Zhen Li; Cameron Ackerley; Dorothee Bienzle; Helena Lei; Roberto Poma; George Harauz; Mario A. Moscarello; Fabrizio G. Mastronardi

SUMMARY Demyelination in the central nervous system is the hallmark feature in multiple sclerosis (MS). The mechanism resulting in destabilization of myelin is a complex multi-faceted process, part of which involves deimination of myelin basic protein (MBP). Deimination, the conversion of protein-bound arginine to citrulline, is mediated by the peptidylarginine deiminase (PAD) family of enzymes, of which the PAD2 and PAD4 isoforms are present in myelin. To test the hypothesis that PAD contributes to destabilization of myelin in MS, we developed a transgenic mouse line (PD2) containing multiple copies of the cDNA encoding PAD2, under the control of the MBP promoter. Using previously established criteria, clinical signs were more severe in PD2 mice than in their normal littermates. The increase in PAD2 expression and activity in white matter was demonstrated by immunohistochemistry, reverse transcriptase-PCR, enzyme activity assays, and increased deimination of MBP. Light and electron microscopy revealed more severe focal demyelination and thinner myelin in the PD2 homozygous mice compared with heterozygous PD2 mice. Quantitation of the disease-associated molecules GFAP and CD68, as measured by immunoslot blots, were indicative of astrocytosis and macrophage activation. Concurrently, elevated levels of the pro-inflammatory cytokine TNF-α and nuclear histone deimination support initiation of demyelination by increased PAD activity. These data support the hypothesis that elevated PAD levels in white matter represents an early change that precedes demyelination.


Journal of Biological Chemistry | 1997

Three-dimensional structure of myelin basic protein. II. Molecular modeling and considerations of predicted structures in multiple sclerosis.

Ross Ridsdale; Daniel R. Beniac; Thomas A. Tompkins; Mario A. Moscarello; George Harauz

A computational model of myelin basic protein (MBP) has been constructed based on the premise of a phylogenetically conserved β-sheet backbone and on electron microscopical three-dimensional reconstructions. Many residues subject to post-translational modification (phosphorylation, methylation, or conversion of arginines to citrullines) were located in loop regions and thus accessible to modifying enzymes. The triproline segment (residues 99-101) is fully exposed on the back surface of the protein in a long crossover connection between two parallel β-strands. The proximity of this region to the underlying β-sheet suggests that post-translational modifications here might have potential synergistic effects on the entire structure. Post-translational modifications that lead to a reduced surface charge could result first in a weakened attachment to the myelin membrane rather than in a gross conformational change of the protein itself. Such mechanisms could be operative in demyelinating diseases such as multiple sclerosis.

Collaboration


Dive into the Mario A. Moscarello's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shawn Winer

University Health Network

View shared research outputs
Researchain Logo
Decentralizing Knowledge