Mario Bortolozzi
University of Padua
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mario Bortolozzi.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Enrico Zampese; Cristina Fasolato; Maulilio J. Kipanyula; Mario Bortolozzi; Tullio Pozzan; Paola Pizzo
Presenilin mutations are the main cause of familial Alzheimers disease (FAD). Presenilins also play a key role in Ca2+ homeostasis, and their FAD-linked mutants affect cellular Ca2+ handling in several ways. We previously have demonstrated that FAD-linked presenilin 2 (PS2) mutants decrease the Ca2+ content of the endoplasmic reticulum (ER) by inhibiting sarcoendoplasmic reticulum Ca2+-ATPase (SERCA) activity and increasing ER Ca2+ leak. Here we focus on the effect of presenilins on mitochondrial Ca2+ dynamics. By using genetically encoded Ca2+ indicators specifically targeted to mitochondria (aequorin- and GFP-based probes) in SH-SY5Y cells and primary neuronal cultures, we show that overexpression or down-regulation of PS2, but not of presenilin 1 (PS1), modulates the Ca2+ shuttling between ER and mitochondria, with its FAD mutants strongly favoring Ca2+ transfer between the two organelles. This effect is not caused by a direct PS2 action on mitochondrial Ca2+-uptake machinery but rather by an increased physical interaction between ER and mitochondria that augments the frequency of Ca2+ hot spots generated at the cytoplasmic surface of the outer mitochondrial membrane upon stimulation. This PS2 function adds further complexity to the multifaceted nature of presenilins and to their physiological role within the cell. We also discuss the importance of this additional effect of FAD-linked PS2 mutants for the understanding of FAD pathogenesis.
Proceedings of the National Academy of Sciences of the United States of America | 2007
R Ficarella; F Di Leva; Mario Bortolozzi; Saida Ortolano; Francesca Donaudy; M Petrillo; Salvatore Melchionda; Andrea Lelli; Teuta Domi; Laura Fedrizzi; Dmitry Lim; Ge Shull; Paolo Gasparini; Marisa Brini; Fabio Mammano; Ernesto Carafoli
Ca2+ enters the stereocilia of hair cells through mechanoelectrical transduction channels opened by the deflection of the hair bundle and is exported back to endolymph by an unusual splicing isoform (w/a) of plasma-membrane calcium-pump isoform 2 (PMCA2). Ablation or missense mutations of the pump cause deafness, as described for the G283S mutation in the deafwaddler (dfw) mouse. A deafness-inducing missense mutation of PMCA2 (G293S) has been identified in a human family. The family also was screened for mutations in cadherin 23, which accentuated hearing loss in a previously described human family with a PMCA2 mutation. A T1999S substitution was detected in the cadherin 23 gene of the healthy father and affected son but not in that of the unaffected mother, who presented instead the PMCA2 mutation. The w/a isoform was overexpressed in CHO cells. At variance with the other PMCA2 isoforms, it became activated only marginally when exposed to a Ca2+ pulse. The G293S and G283S mutations delayed the dissipation of Ca2+ transients induced in CHO cells by InsP3. In organotypic cultures, Ca2+ imaging of vestibular hair cells showed that the dissipation of stereociliary Ca2+ transients induced by Ca2+ uncaging was compromised in the dfw and PMCA2 knockout mice, as was the sensitivity of the mechanoelectrical transduction channels to hair bundle displacement in cochlear hair cells.
Human Molecular Genetics | 2008
Marco Spinazzi; Silvia Cazzola; Mario Bortolozzi; Alessandra Baracca; Emanuele Loro; Alberto Casarin; Giancarlo Solaini; Gianluca Sgarbi; Gabriella Casalena; Giovanna Cenacchi; Adriana Malena; Christian Frezza; Franco Carrara; Corrado Angelini; Luca Scorrano; Leonardo Salviati; Lodovica Vergani
Autosomal dominant optic atrophy (ADOA), the commonest cause of inherited optic atrophy, is caused by mutations in the ubiquitously expressed gene optic atrophy 1 (OPA1), involved in fusion and biogenesis of the inner membrane of mitochondria. Bioenergetic failure, mitochondrial network abnormalities and increased apoptosis have all been proposed as possible causal factors. However, their relative contribution to pathogenesis as well as the prominent susceptibility of the retinal ganglion cell (RGC) in this disease remains uncertain. Here we identify a novel deletion of OPA1 gene in the GTPase domain in three patients affected by ADOA. Muscle biopsy of the patients showed neurogenic atrophy and abnormal morphology and distribution of mitochondria. Confocal microscopy revealed increased mitochondrial fragmentation in fibroblasts as well as in myotubes, where mitochondria were also unevenly distributed, with clustered organelles alternating with areas where mitochondria were sparse. These abnormalities were not associated with altered bioenergetics or increased susceptibility to pro-apoptotic stimuli. Therefore, changes in mitochondrial shape and distribution can be independent of other reported effects of OPA1 mutations, and therefore may be the primary cause of the disease. The arrangement of mitochondria in RGCs, which degenerate in ADOA, may be exquisitely sensitive to disturbance, and this may lead to bioenergetic crisis and/or induction of apoptosis. Our results highlight the importance of mitochondrial dynamics in the disease per se, and point to the loss of the fine positioning of mitochondria in the axons of RGCs as a possible explanation for their predominant degeneration in ADOA.
Nature Methods | 2007
Victor H. Hernandez; Mario Bortolozzi; Vanessa Pertegato; Martina Beltramello; Michele Giarin; Manuela Zaccolo; Sergio Pantano; Fabio Mammano
Gap junction channels assembled from connexin protein subunits mediate intercellular transfer of ions and metabolites. Impaired channel function is implicated in several hereditary human diseases. In particular, defective permeation of cAMP or inositol-1,4,5-trisphosphate (InsP3) through connexin channels is associated with peripheral neuropathies and deafness, respectively. Here we present a method to estimate the permeability of single gap junction channels to second messengers. Using HeLa cells that overexpressed wild-type human connexin 26 (HCx26wt) as a model system, we combined measurements of junctional conductance and fluorescence resonance energy transfer (FRET) emission ratio of biosensors selective for cAMP and InsP3. The unitary permeabilities to cAMP (47 × 10−3 ± 15 × 10−3 μm3/s) and InsP3 (60 × 10−3 ± 12 × 10−3 μm3/s) were similar, but substantially larger than the unitary permeability to lucifer yellow (LY; 7 ± 3 × 10−3 μm3/s), an exogenous tracer. This method permits quantification of defects of metabolic coupling and can be used to investigate interdependence of intercellular diffusion and cross-talk between diverse signaling pathways.
Human Molecular Genetics | 2010
Melanie Schütz; Pietro Scimemi; Paromita Majumder; Romolo Daniele De Siati; Giulia Crispino; Laura Rodríguez; Mario Bortolozzi; Rosamaria Santarelli; Anke Seydel; Stephan Sonntag; Neil Ingham; Karen P. Steel; Klaus Willecke; Fabio Mammano
Mutations in the GJB2 and GJB6 genes, respectively, coding for connexin26 (Cx26) and connexin30 (Cx30) proteins, are the most common cause for prelingual non-syndromic deafness in humans. In the inner ear, Cx26 and Cx30 are expressed in different non-sensory cell types, where they largely co-localize and may form heteromeric gap junction channels. Here, we describe the generation and characterization of a mouse model for human bilateral middle/high-frequency hearing loss based on the substitution of an evolutionarily conserved threonine by a methionine residue at position 5 near the N-terminus of Cx30 (Cx30T5M). The mutation was inserted in the mouse genome by homologous recombination in mouse embryonic stem cells. Expression of the mutated Cx30T5M protein in these transgenic mice is under the control of the endogenous Cx30 promoter and was analysed via activation of the lacZ reporter gene. When probed by auditory brainstem recordings, Cx30T5M/T5M mice exhibited a mild, but significant increase in their hearing thresholds of about 15 dB at all frequencies. Immunolabelling with antibodies to Cx26 or Cx30 suggested normal location of these proteins in the adult inner ear, but western blot analysis showed significantly down-regulated the expression levels of Cx26 and Cx30. In the developing cochlea, electrical coupling, probed by dual patch-clamp recordings, was normal. However, transfer of the fluorescent tracer calcein between cochlear non-sensory cells was reduced, as was intercellular Ca2+ signalling due to spontaneous ATP release from connexin hemichannels. Our findings link hearing loss to decreased biochemical coupling due to the point-mutated Cx30 in mice.
PLOS Genetics | 2008
Sarah L. Spiden; Mario Bortolozzi; Francesca Di Leva; Martin Hrabé de Angelis; Helmut Fuchs; Dmitry Lim; Saida Ortolano; Neil Ingham; Marisa Brini; Ernesto Carafoli; Fabio Mammano; Karen P. Steel
Progressive hearing loss is common in the human population, but we have few clues to the molecular basis. Mouse mutants with progressive hearing loss offer valuable insights, and ENU (N-ethyl-N-nitrosourea) mutagenesis is a useful way of generating models. We have characterised a new ENU-induced mouse mutant, Oblivion (allele symbol Obl), showing semi-dominant inheritance of hearing impairment. Obl/+ mutants showed increasing hearing impairment from post-natal day (P)20 to P90, and loss of auditory function was followed by a corresponding base to apex progression of hair cell degeneration. Obl/Obl mutants were small, showed severe vestibular dysfunction by 2 weeks of age, and were completely deaf from birth; sensory hair cells were completely degenerate in the basal turn of the cochlea, although hair cells appeared normal in the apex. We mapped the mutation to Chromosome 6. Mutation analysis of Atp2b2 showed a missense mutation (2630C→T) in exon 15, causing a serine to phenylalanine substitution (S877F) in transmembrane domain 6 of the PMCA2 pump, the resident Ca2+ pump of hair cell stereocilia. Transmembrane domain mutations in these pumps generally are believed to be incompatible with normal targeting of the protein to the plasma membrane. However, analyses of hair cells in cultured utricular maculae of Obl/Obl mice and of the mutant Obl pump in model cells showed that the protein was correctly targeted to the plasma membrane. Biochemical and biophysical characterisation showed that the pump had lost a significant portion of its non-stimulated Ca2+ exporting ability. These findings can explain the progressive loss of auditory function, and indicate the limits in our ability to predict mechanism from sequence alone.
Purinergic Signalling | 2010
Paromita Majumder; Giulia Crispino; Laura Rodríguez; Catalin Dacian Ciubotaru; Fabio Anselmi; Valeria Piazza; Mario Bortolozzi; Fabio Mammano
Connexin 26 (Cx26) and connexin 30 (Cx30) form hemichannels that release ATP from the endolymphatic surface of cochlear supporting and epithelial cells and also form gap junction (GJ) channels that allow the concomitant intercellular diffusion of Ca2+ mobilizing second messengers. Released ATP in turn activates G-protein coupled P2Y2 and P2Y4 receptors, PLC-dependent generation of IP3, release of Ca2+ from intracellular stores, instigating the regenerative propagation of intercellular Ca2+ signals (ICS). The range of ICS propagation is sensitive to the concentration of extracellular divalent cations and activity of ectonucleotidases. Here, the expression patterns of Cx26 and Cx30 were characterized in postnatal cochlear tissues obtained from mice aged between P5 and P6. The expression gradient along the longitudinal axis of the cochlea, decreasing from the basal to the apical cochlear turn (CT), was more pronounced in outer sulcus (OS) cells than in inner sulcus (IS) cells. GJ-mediated dye coupling was maximal in OS cells of the basal CT, inhibited by the nonselective connexin channel blocker carbenoxolone (CBX) and absent in hair cells. Photostimulating OS cells with caged inositol (3,4,5) tri-phosphate (IP3) resulted in transfer of ICS in the lateral direction, from OS cells to IS cells across the hair cell region (HCR) of medial and basal CTs. ICS transfer in the opposite (medial) direction, from IS cells photostimulated with caged IP3 to OS cells, occurred mostly in the basal CT. In addition, OS cells displayed impressive rhythmic activity with oscillations of cytosolic free Ca2+ concentration ([Ca2+]i) coordinated by the propagation of Ca2+ wavefronts sweeping repeatedly through the same tissue area along the coiling axis of the cochlea. Oscillations evoked by uncaging IP3 or by applying ATP differed greatly, by as much as one order of magnitude, in frequency and waveform rise time. ICS evoked by direct application of ATP propagated along convoluted cellular paths in the OS, which often branched and changed dynamically over time. Potential implications of these findings are discussed in the context of developmental regulation and cochlear pathophysiology.
Journal of Biological Chemistry | 2010
Mario Bortolozzi; Marisa Brini; Nick Parkinson; Giulia Crispino; Pietro Scimemi; Romolo Daniele De Siati; Francesca Di Leva; Andrew E. Parker; Saida Ortolano; Edoardo Arslan; Steve D.M. Brown; Ernesto Carafoli; Fabio Mammano
The mechanotransduction process in hair cells in the inner ear is associated with the influx of calcium from the endolymph. Calcium is exported back to the endolymph via the splice variant w/a of the PMCA2 of the stereocilia membrane. To further investigate the role of the pump, we have identified and characterized a novel ENU-induced mouse mutation, Tommy, in the PMCA2 gene. The mutation causes a non-conservative E629K change in the second intracellular loop of the pump that harbors the active site. Tommy mice show profound hearing impairment from P18, with significant differences in hearing thresholds between wild type and heterozygotes. Expression of mutant PMCA2 in CHO cells shows calcium extrusion impairment; specifically, the long term, non-stimulated calcium extrusion activity of the pump is inhibited. Calcium extrusion was investigated directly in neonatal organotypic cultures of the utricle sensory epithelium in Tommy mice. Confocal imaging combined with flash photolysis of caged calcium showed impairment of calcium export in both Tommy heterozygotes and homozygotes. Immunofluorescence studies of the organ of Corti in homozygous Tommy mice showed a progressive base to apex degeneration of hair cells after P40. Our results on the Tommy mutation along with previously observed interactions between cadherin-23 and PMCA2 mutations in mouse and humans underline the importance of maintaining the appropriate calcium concentrations in the endolymph to control the rigidity of cadherin and ensure the function of interstereocilia links, including tip links, of the stereocilia bundle.
PLOS ONE | 2011
Giulia Crispino; Giovanni Di Pasquale; Pietro Scimemi; Laura Rodríguez; Fabian Galindo Ramirez; Romolo Daniele De Siati; Rosa Maria Santarelli; Edoardo Arslan; Mario Bortolozzi; John A. Chiorini; Fabio Mammano
The deafness locus DFNB1 contains GJB2, the gene encoding connexin26 and GJB6, encoding connexin30, which appear to be coordinately regulated in the inner ear. In this work, we investigated the expression and function of connexin26 and connexin30 from postnatal day 5 to adult age in double transgenic Cx26Sox10Cre mice, which we obtained by crossing connexin26 floxed mice with a deleter Sox10–Cre line. Cx26Sox10Cre mice presented with complete connexin26 ablation in the epithelial gap junction network of the cochlea, whereas connexin30 expression was developmentally delayed; immunolabeling patterns for both connexins were normal in the cochlear lateral wall. In vivo electrophysiological measurements in Cx26Sox10Cre mice revealed profound hearing loss accompanied by reduction of endocochlear potential, and functional experiments performed in postnatal cochlear organotypic cultures showed impaired gap junction coupling. Transduction of these cultures with a bovine adeno associated virus vector restored connexin26 protein expression and rescued gap junction coupling. These results suggest that restoration of normal connexin levels by gene delivery via recombinant adeno associated virus could be a way to rescue hearing function in DFNB1 mouse models and, in future, lead to the development of therapeutic interventions in humans.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Laura Rodríguez; Elena Simeonato; Pietro Scimemi; Fabio Anselmi; Bianca Calì; Giulia Crispino; Catalin Dacian Ciubotaru; Mario Bortolozzi; Fabian Galindo Ramirez; Paromita Majumder; Edoardo Arslan; Pietro De Camilli; Tullio Pozzan; Fabio Mammano
Phosphatidylinositol phosphate kinase type 1γ (PIPKIγ) is a key enzyme in the generation of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and is expressed at high levels in the nervous system. Homozygous knockout mice lacking this enzyme die postnatally within 24 h, whereas PIPKIγ+/− siblings breed normally and have no reported phenotype. Here we show that adult PIPKIγ+/− mice have dramatically elevated hearing thresholds for high-frequency sounds. During the first postnatal week we observed a reduction of ATP-dependent Ca2+ signaling activity in cochlear nonsensory cells. Because Ca2+ signaling under these conditions depends on inositol-1,4,5-trisphosphate generation from phospholipase C (PLC)-dependent hydrolysis of PI(4,5)P2, we conclude that (i) PIPKIγ is primarily responsible for the synthesis of the receptor-regulated PLC-sensitive PI(4,5)P2 pool in the cell syncytia that supports auditory hair cells; (ii) spatially graded impairment of this signaling pathway in cochlear nonsensory cells causes a selective alteration in the acquisition of hearing in PIPKIγ+/− mice. This mouse model also suggests that PIPKIγ may determine the level of gap junction contribution to cochlear development.