Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mario Faretta is active.

Publication


Featured researches published by Mario Faretta.


The EMBO Journal | 2002

Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence

Emma Langley; Mark Pearson; Mario Faretta; Uta-Maria Bauer; Roy A. Frye; Saverio Minucci; Pier Giuseppe Pelicci; Tony Kouzarides

The yeast Sir2 protein mediates chromatin silencing through an intrinsic NAD‐dependent histone deacetylase activity. Sir2 is a conserved protein and was recently shown to regulate lifespan extension both in budding yeast and worms. Here, we show that SIRT1, the human Sir2 homolog, is recruited to the promyelocytic leukemia protein (PML) nuclear bodies of mammalian cells upon overexpression of either PML or oncogenic Ras (Ha‐rasV12). SIRT1 binds and deacetylates p53, a component of PML nuclear bodies, and it can repress p53‐mediated transactivation. Moreover, we show that SIRT1 and p53 co‐localize in nuclear bodies upon PML upregulation. When overexpressed in primary mouse embryo fibroblasts (MEFs), SIRT1 antagonizes PML‐induced acetylation of p53 and rescues PML‐mediated premature cellular senescence. Taken together, our data establish the SIRT1 deacetylase as a novel negative regulator of p53 function capable of modulating cellular senescence.


Nature | 2002

A single motif responsible for ubiquitin recognition and monoubiquitination in endocytic proteins

Simona Polo; Sara Sigismund; Mario Faretta; Monica Guidi; Maria Rosaria Capua; Giovanna Bossi; Hong Chen; Pietro De Camilli; Pier Paolo Di Fiore

Ubiquitination is a post-translation modification in which ubiquitin chains or single ubiquitin molecules are appended to target proteins, giving rise to poly- or monoubiquitination, respectively. Polyubiquitination targets proteins for destruction by the proteasome. The role of monoubiquitination is less understood, although a function in membrane trafficking is emerging, at least in yeast. Here we report that a short amino-acid stretch at the carboxy-termini of the monoubiquitinated endocytic proteins Eps15 and eps15R is indispensable for their monoubiquitination. A similar sequence, also required for this modification, is found in other cytosolic endocytic proteins, such as epsins and Hrs. These sequences comprise a protein motif, UIM (ref. 6), which has been proposed to bind to ubiquitin. We confirm this for the UIMs of eps15, eps15R, epsins and Hrs. Thus, the same motif in several endocytic proteins is responsible for ubiquitin recognition and monoubiquitination. Our results predict the existence of a UIM:ubiquitin-based intracellular network. Eps15/eps15R, epsins and Hrs may function as adaptors between ubiquitinated membrane cargo and either the clathrin coat or other endocytic scaffolds. In addition, through their own ubiquitination, they may further contribute to the amplification of this network in the endocytic pathway.


Cell | 2009

The Tumor Suppressor p53 Regulates Polarity of Self-Renewing Divisions in Mammary Stem Cells

Angelo Cicalese; Giuseppina Bonizzi; Cristina E. Pasi; Mario Faretta; Simona Ronzoni; Barbara Giulini; Cathrin Brisken; Saverio Minucci; Pier Paolo Di Fiore; Pier Giuseppe Pelicci

Stem-like cells may be integral to the development and maintenance of human cancers. Direct proof is still lacking, mainly because of our poor understanding of the biological differences between normal and cancer stem cells (SCs). Using the ErbB2 transgenic model of breast cancer, we found that self-renewing divisions of cancer SCs are more frequent than their normal counterparts, unlimited and symmetric, thus contributing to increasing numbers of SCs in tumoral tissues. SCs with targeted mutation of the tumor suppressor p53 possess the same self-renewal properties as cancer SCs, and their number increases progressively in the p53 null premalignant mammary gland. Pharmacological reactivation of p53 correlates with restoration of asymmetric divisions in cancer SCs and tumor growth reduction, without significant effects on additional cancer cells. These data demonstrate that p53 regulates polarity of cell division in mammary SCs and suggest that loss of p53 favors symmetric divisions of cancer SCs, contributing to tumor growth.


Cell | 2008

Endocytic Trafficking of Rac Is Required for the Spatial Restriction of Signaling in Cell Migration

Andrea Palamidessi; Emanuela Frittoli; Massimiliano Garrè; Mario Faretta; Marina Mione; Ilaria Testa; Alberto Diaspro; Letizia Lanzetti; Giorgio Scita; Pier Paolo Di Fiore

The small GTPases, Rab5 and Rac, are essential for endocytosis and actin remodeling, respectively. Coordination of these processes is critical to achieve spatial restriction of intracellular signaling, which is essential for a variety of polarized functions. Here, we show that clathrin- and Rab5-mediated endocytosis are required for the activation of Rac induced by motogenic stimuli. Rac activation occurs on early endosomes, where the RacGEF Tiam1 is also recruited. Subsequent recycling of Rac to the plasma membrane ensures localized signaling, leading to the formation of actin-based migratory protrusions. Thus, membrane trafficking of Rac is required for the spatial resolution of Rac-dependent motogenic signals. We further demonstrate that a Rab5-to-Rac circuitry controls the morphology of motile mammalian tumor cells and primordial germinal cells during zebrafish development, suggesting that this circuitry is relevant for the regulation of migratory programs in various cells, in both in vitro settings and whole organisms.


Nature Methods | 2011

Live-cell 3D super-resolution imaging in thick biological samples

Francesca Cella Zanacchi; Zeno Lavagnino; Michela Perrone Donnorso; Alessio Del Bue; Laura Furia; Mario Faretta; Alberto Diaspro

We demonstrate three-dimensional (3D) super-resolution live-cell imaging through thick specimens (50–150 μm), by coupling far-field individual molecule localization with selective plane illumination microscopy (SPIM). The improved signal-to-noise ratio of selective plane illumination allows nanometric localization of single molecules in thick scattering specimens without activating or exciting molecules outside the focal plane. We report 3D super-resolution imaging of cellular spheroids.


Journal of Cell Biology | 2002

Mechanisms through which Sos-1 coordinates the activation of Ras and Rac

Metello Innocenti; Pierluigi Tenca; Emanuela Frittoli; Mario Faretta; Arianna Tocchetti; Pier Paolo Di Fiore; Giorgio Scita

Signaling from receptor tyrosine kinases (RTKs)* requires the sequential activation of the small GTPases Ras and Rac. Son of sevenless (Sos-1), a bifunctional guanine nucleotide exchange factor (GEF), activates Ras in vivo and displays Rac-GEF activity in vitro, when engaged in a tricomplex with Eps8 and E3b1–Abi-1, a RTK substrate and an adaptor protein, respectively. A mechanistic understanding of how Sos-1 coordinates Ras and Rac activity is, however, still missing. Here, we demonstrate that (a) Sos-1, E3b1, and Eps8 assemble into a tricomplex in vivo under physiological conditions; (b) Grb2 and E3b1 bind through their SH3 domains to the same binding site on Sos-1, thus determining the formation of either a Sos-1–Grb2 (S/G) or a Sos-1–E3b1–Eps8 (S/E/E8) complex, endowed with Ras- and Rac-specific GEF activities, respectively; (c) the Sos-1–Grb2 complex is disrupted upon RTKs activation, whereas the S/E/E8 complex is not; and (d) in keeping with the previous result, the activation of Ras by growth factors is short-lived, whereas the activation of Rac is sustained. Thus, the involvement of Sos-1 at two distinct and differentially regulated steps of the signaling cascade allows for coordinated activation of Ras and Rac and different duration of their signaling within the cell.


The EMBO Journal | 2001

Mad2 binding to Mad1 and Cdc20, rather than oligomerization, is required for the spindle checkpoint

Lucia Sironi; Marina Melixetian; Mario Faretta; Elena Prosperini; Kristian Helin; Andrea Musacchio

Mad2 is a key component of the spindle checkpoint, a device that controls the fidelity of chromosome segregation in mitosis. The ability of Mad2 to form oligomers in vitro has been correlated with its ability to block the cell cycle upon injection into Xenopus embryos. Here we show that Mad2 forms incompatible complexes with Mad1 and Cdc20, neither of which requires Mad2 oligomerization. A monomeric point mutant of Mad2 can sustain a cell cycle arrest of comparable strength to that of the wild‐type protein. We show that the interaction of Mad2 with Mad1 is crucial for the localization of Mad2 to kinetochores, where Mad2 interacts with Cdc20. We propose a model that features the kinetochore as a ‘folding factory’ for the formation of a Mad2–Cdc20 complex endowed with inhibitory activity on the anaphase promoting complex.


Current Biology | 2006

In Vitro FRAP Identifies the Minimal Requirements for Mad2 Kinetochore Dynamics

Martin Vink; Marco Simonetta; Pietro Transidico; Karin Johanna Ferrari; Marina Mapelli; Anna De Antoni; Lucia Massimiliano; Andrea Ciliberto; Mario Faretta; E. D. Salmon; Andrea Musacchio

BACKGROUND Mad1 and Mad2 are constituents of the spindle-assembly checkpoint, a device coupling the loss of sister-chromatid cohesion at anaphase to the completion of microtubule attachment of the sister chromatids at metaphase. Fluorescence recovery after photobleaching (FRAP) revealed that the interaction of cytosolic Mad2 with kinetochores is highly dynamic, suggesting a mechanism of catalytic activation of Mad2 at kinetochores followed by its release in a complex with Cdc20. The recruitment of cytosolic Mad2 to kinetochores has been attributed to a stable receptor composed of a distinct pool of Mad2 tightly bound to Mad1. Whether specifically this interaction accounts for the kinetochore dynamics of Mad2 is currently unknown. RESULTS To gain a precise molecular understanding of the interaction of Mad2 with kinetochores, we reconstituted the putative Mad2 kinetochore receptor and developed a kinetochore recruitment assay with purified components. When analyzed by FRAP in vitro, this system faithfully reproduced the previously described in vivo dynamics of Mad2, providing an unequivocal molecular account of the interaction of Mad2 with kinetochores. Using the same approach, we dissected the mechanism of action of p31(comet), a spindle-assembly checkpoint inhibitor. CONCLUSIONS In vitro FRAP is a widely applicable approach to dissecting the molecular bases of the interaction of a macromolecule with an insoluble cellular scaffold. The combination of in vitro fluorescence recovery after photobleaching with additional fluorescence-based assays in vitro can be used to unveil mechanism, stoichiometry, and kinetic parameters of a macromolecular interaction, all of which are important for modeling protein interaction networks.


Biomedical Engineering Online | 2006

Multi-photon excitation microscopy

Alberto Diaspro; Paolo Bianchini; Giuseppe Vicidomini; Mario Faretta; Paola Ramoino; Cesare Usai

Multi-photon excitation (MPE) microscopy plays a growing role among microscopical techniques utilized for studying biological matter. In conjunction with confocal microscopy it can be considered the imaging workhorse of life science laboratories. Its roots can be found in a fundamental work written by Maria Goeppert Mayer more than 70 years ago. Nowadays, 2PE and MPE microscopes are expected to increase their impact in areas such biotechnology, neurobiology, embryology, tissue engineering, materials science where imaging can be coupled to the possibility of using the microscopes in an active way, too. As well, 2PE implementations in noninvasive optical bioscopy or laser-based treatments point out to the relevance in clinical applications. Here we report about some basic aspects related to the phenomenon, implications in three-dimensional imaging microscopy, practical aspects related to design and realization of MPE microscopes, and we only give a list of potential applications and variations on the theme in order to offer a starting point for advancing new applications and developments.


Proceedings of the National Academy of Sciences of the United States of America | 2013

DNA damage in stem cells activates p21, inhibits p53, and induces symmetric self-renewing divisions

Alessandra Insinga; Angelo Cicalese; Mario Faretta; Barbara Gallo; Luisa Albano; Simona Ronzoni; Laura Furia; Andrea Viale; Pier Giuseppe Pelicci

DNA damage leads to a halt in proliferation owing to apoptosis or senescence, which prevents transmission of DNA alterations. This cellular response depends on the tumor suppressor p53 and functions as a powerful barrier to tumor development. Adult stem cells are resistant to DNA damage-induced apoptosis or senescence, however, and how they execute this response and suppress tumorigenesis is unknown. We show that irradiation of hematopoietic and mammary stem cells up-regulates the cell cycle inhibitor p21, a known target of p53, which prevents p53 activation and inhibits p53 basal activity, impeding apoptosis and leading to cell cycle entry and symmetric self-renewing divisions. p21 also activates DNA repair, limiting DNA damage accumulation and self-renewal exhaustion. Stem cells with moderate DNA damage and diminished self-renewal persist after irradiation, however. These findings suggest that stem cells have evolved a unique, p21-dependent response to DNA damage that leads to their immediate expansion and limits their long-term survival.

Collaboration


Dive into the Mario Faretta's collaboration.

Top Co-Authors

Avatar

Alberto Diaspro

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Laura Furia

European Institute of Oncology

View shared research outputs
Top Co-Authors

Avatar

Pier Giuseppe Pelicci

European Institute of Oncology

View shared research outputs
Top Co-Authors

Avatar

Sara Barozzi

European Institute of Oncology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Simona Ronzoni

European Institute of Oncology

View shared research outputs
Top Co-Authors

Avatar

Dario Parazzoli

European Institute of Oncology

View shared research outputs
Top Co-Authors

Avatar

Paolo Bianchini

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Saverio Minucci

European Institute of Oncology

View shared research outputs
Top Co-Authors

Avatar

Francesca Cella Zanacchi

Istituto Italiano di Tecnologia

View shared research outputs
Researchain Logo
Decentralizing Knowledge