Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Simona Ronzoni is active.

Publication


Featured researches published by Simona Ronzoni.


Cell | 2010

Biological and Molecular Heterogeneity of Breast Cancers Correlates with Their Cancer Stem Cell Content

Salvatore Pece; Daniela Tosoni; Stefano Confalonieri; Giovanni Mazzarol; Manuela Vecchi; Simona Ronzoni; Loris Bernard; Giuseppe Viale; Pier Giuseppe Pelicci; Pier Paolo Di Fiore

Pathways that govern stem cell (SC) function are often subverted in cancer. Here, we report the isolation to near purity of human normal mammary SCs (hNMSCs), from cultured mammospheres, on the basis of their ability to retain the lipophilic dye PKH26 as a consequence of their quiescent nature. PKH26-positive cells possess all the characteristics of hNMSCs. The transcriptional profile of PKH26-positive cells (hNMSC signature) was able to predict biological and molecular features of breast cancers. By using markers of the hNMSC signature, we prospectively isolated SCs from the normal gland and from breast tumors. Poorly differentiated (G3) cancers displayed higher content of prospectively isolated cancer SCs (CSCs) than did well-differentiated (G1) cancers. By comparing G3 and G1 tumors in xenotransplantation experiments, we directly demonstrated that G3s are enriched in CSCs. Our data support the notion that the heterogeneous phenotypical and molecular traits of human breast cancers are a function of their CSC content.


Cell | 2009

The Tumor Suppressor p53 Regulates Polarity of Self-Renewing Divisions in Mammary Stem Cells

Angelo Cicalese; Giuseppina Bonizzi; Cristina E. Pasi; Mario Faretta; Simona Ronzoni; Barbara Giulini; Cathrin Brisken; Saverio Minucci; Pier Paolo Di Fiore; Pier Giuseppe Pelicci

Stem-like cells may be integral to the development and maintenance of human cancers. Direct proof is still lacking, mainly because of our poor understanding of the biological differences between normal and cancer stem cells (SCs). Using the ErbB2 transgenic model of breast cancer, we found that self-renewing divisions of cancer SCs are more frequent than their normal counterparts, unlimited and symmetric, thus contributing to increasing numbers of SCs in tumoral tissues. SCs with targeted mutation of the tumor suppressor p53 possess the same self-renewal properties as cancer SCs, and their number increases progressively in the p53 null premalignant mammary gland. Pharmacological reactivation of p53 correlates with restoration of asymmetric divisions in cancer SCs and tumor growth reduction, without significant effects on additional cancer cells. These data demonstrate that p53 regulates polarity of cell division in mammary SCs and suggest that loss of p53 favors symmetric divisions of cancer SCs, contributing to tumor growth.


Nature Medicine | 2005

Inhibitors of histone deacetylases induce tumor-selective apoptosis through activation of the death receptor pathway

Alessandra Insinga; Silvia Monestiroli; Simona Ronzoni; Vania Gelmetti; Francesco Marchesi; Andrea Viale; Lucia Altucci; Clara Nervi; Saverio Minucci; Pier Giuseppe Pelicci

Histone deacetylases (HDACs) regulate transcription and specific cellular functions, such as tumor suppression by p53, and are frequently altered in cancer. Inhibitors of HDACs (HDACIs) possess antitumor activity and are well tolerated, supporting the idea that their use might develop as a specific strategy for cancer treatment. The molecular basis for their selective antitumor activity is, however, unknown. We investigated the effects of HDACIs on leukemias expressing the PML-RAR or AML1-ETO oncoproteins, known to initiate leukemogenesis through deregulation of HDACs. Here we report that: (i) HDACIs induce apoptosis of leukemic blasts, although oncogene expression is not sufficient to confer HDACI sensitivity to normal cells; (ii) apoptosis is p53 independent and depends, both in vitro and in vivo, upon activation of the death receptor pathway (TRAIL and Fas signaling pathways); (iii) TRAIL, DR5, FasL and Fas are upregulated by HDACIs in the leukemic cells, but not in normal hematopoietic progenitors. These results show that sensitivity to HDACIs in leukemias is a property of the fully transformed phenotype and depends on activation of a specific death pathway.


Nature | 2009

Cell-cycle restriction limits DNA damage and maintains self-renewal of leukaemia stem cells.

Andrea Viale; Francesca De Franco; Annette Orleth; Valeria Cambiaghi; Virginia Giuliani; Daniela Bossi; Chiara Ronchini; Simona Ronzoni; Ivan Muradore; Silvia Monestiroli; Alberto Gobbi; Myriam Alcalay; Saverio Minucci; Pier Giuseppe Pelicci

Rare cells with the properties of stem cells are integral to the development and perpetuation of leukaemias. A defining characteristic of stem cells is their capacity to self-renew, which is markedly extended in leukaemia stem cells. The underlying molecular mechanisms, however, are largely unknown. Here we demonstrate that expression of the cell-cycle inhibitor p21 is indispensable for maintaining self-renewal of leukaemia stem cells. Expression of leukaemia-associated oncogenes in mouse haematopoietic stem cells (HSCs) induces DNA damage and activates a p21-dependent cellular response, which leads to reversible cell-cycle arrest and DNA repair. Activated p21 is critical in preventing excess DNA-damage accumulation and functional exhaustion of leukaemic stem cells. These data unravel the oncogenic potential of p21 and suggest that inhibition of DNA repair mechanisms might function as potent strategy for the eradication of the slowly proliferating leukaemia stem cells.


European Journal of Cancer | 2001

Ecteinascidin-743 (ET-743), a natural marine compound, with a unique mechanism of action

Eugenio Erba; Daniele Bergamaschi; L Bassano; Giovanna Damia; Simona Ronzoni; G Faircloth; Maurizio D'Incalci

The mode of action of Ecteinascidin-743 (ET-743), a marine tetrahydroisoquinoline alkaloid isolated from Ecteinascidia turbinata, which has shown very potent antitumour activity in preclinical systems and encouraging results in Phase I clinical trials was investigated at a cellular level. Both SW620 and LoVo human intestinal carcinoma cell lines exposed for 1 h to ET-743 progress through S phase more slowly than control cells and then accumulate in the G2M phase. The sensitivity to ET-743 of G1 synchronised cells was much higher than that of cells synchronised in S phase and even higher than that of cells synchronised in G2M. ET-743 concentrations up to four times higher than the IC(50) value caused no detectable DNA breaks or DNA-protein cross-links as assessed by alkaline elution techniques. ET-743 induced a significant increase in p53 levels in cell lines expressing wild-type (wt) (p53). However, the p53 status does not appear to be related to the ET-743 cytotoxic activity as demonstrated by comparing the drug sensitivity in p53 (-/-) or (+/+) mouse embryo fibroblasts and in A2780 ovarian cancer cells or the A2780/CX3 sub-line transfected with a dominant-negative mutant TP53. The cytotoxic potency of ET-743 was comparatively evaluated in CHO cell lines proficient or deficient in nucleotide excision repair (NER), and it was found that ET-743 was approximately 7-8 times less active in ERCC3/XPB and ERCC1-deficient cells than control cells. The findings that G1 phase cells are hypersensitive and that NER-deficient cells are resistant to ET-743 indicate that the mode of action of ET-743 is unique and different from that of other DNA-interacting drugs.


Molecular and Cellular Biology | 2007

Role for Histone Deacetylase 1 in Human Tumor Cell Proliferation

Silvia Senese; Katrin Zaragoza; Simone P. Minardi; Ivan Muradore; Simona Ronzoni; Alfonso Passafaro; Loris Bernard; Giulio Draetta; Myriam Alcalay; Christian Seiser; Susanna Chiocca

ABSTRACT Posttranslational modifications of core histones are central to the regulation of gene expression. Histone deacetylases (HDACs) repress transcription by deacetylating histones, and class I HDACs have a crucial role in mouse, Xenopus laevis, zebra fish, and Caenorhabditis elegans development. The role of individual class I HDACs in tumor cell proliferation was investigated using RNA interference-mediated protein knockdown. We show here that in the absence of HDAC1 cells can arrest either at the G1 phase of the cell cycle or at the G2/M transition, resulting in the loss of mitotic cells, cell growth inhibition, and an increase in the percentage of apoptotic cells. On the contrary, HDAC2 knockdown showed no effect on cell proliferation unless we concurrently knocked down HDAC1. Using gene expression profiling analysis, we found that inactivation of HDAC1 affected the transcription of specific target genes involved in proliferation and apoptosis. Furthermore, HDAC2 downregulation did not cause significant changes compared to control cells, while inactivation of HDAC1, HDAC1 plus HDAC2, or HDAC3 resulted in more distinct clusters. Loss of these HDACs might impair cell cycle progression by affecting not only the transcription of specific target genes but also other biological processes. Our data support the idea that a drug targeting specific HDACs could be highly beneficial in the treatment of cancer.


Journal of Experimental Medicine | 2003

Lipopolysaccharide or Whole Bacteria Block the Conversion of Inflammatory Monocytes into Dendritic Cells In Vivo

Gianluca Rotta; Emmerson W. Edwards; Sabina Sangaletti; Clare L. Bennett; Simona Ronzoni; Mario P. Colombo; Ralph M. Steinman; Gwendalyn J. Randolph; Maria Rescigno

Monocytes can develop into dendritic cells (DCs) that migrate to lymph nodes (LNs) and present antigens to T cells. However, we find that this differentiation is blocked when monocytes accumulate subcutaneously in response to bacteria or lipopolysaccharide (LPS). The inhibition of DC differentiation is mediated by the bacteria and in conjunction with inflammatory cells recruited at the site of injection. Inhibition of migratory DC development was reversed in Toll-like receptor (TLR)4-mutated mice when LPS, but not whole bacteria, was injected, suggesting that TLR4 is one but not the only mediator of the inhibition. The block imposed by bacteria was partly relieved by the absence of interleukin (IL)-12 p40, but not by individual absence of several cytokines involved in DC differentiation or in inflammation, i.e., IL-6, IL-10, IL-12 p35, and interferon γ. Consistent with the inability of monocytes to yield migrating DCs, and the finding that other DCs had limited access to particulate or bacterial antigens, these antigens were weakly presented to T cells in the draining LN. These results illustrate that bacteria-associated signals can have a negative regulatory role on adaptive immunity and that local innate responses for containment of infectious bacteria can at least initially supersede development of adaptive responses.


The EMBO Journal | 2004

Impairment of p53 acetylation, stability and function by an oncogenic transcription factor.

Alessandra Insinga; Silvia Monestiroli; Simona Ronzoni; Roberta Carbone; Mark Pearson; Giancarlo Pruneri; Giuseppe Viale; Ettore Appella; Pier Giuseppe Pelicci; Saverio Minucci

Mutations of p53 are remarkably rare in acute promyelocytic leukemias (APLs). Here, we demonstrate that the APL‐associated fusion proteins PML–RAR and PLZF‐RAR directly inhibit p53, allowing leukemic blasts to evade p53‐dependent cancer surveillance pathways. PML–RAR causes deacetylation and degradation of p53, resulting in repression of p53 transcriptional activity, and protection from p53‐dependent responses to genotoxic stress. These phenomena are dependent on the expression of wild‐type PML, acting as a bridge between p53 and PML–RAR. Recruitment of histone deacetylase (HDAC) to p53 and inhibition of p53 activity were abrogated by conditions that either inactivate HDACs or trigger HDAC release from the fusion protein, implicating recruitment of HDAC by PML–RAR as the mechanism underlying p53 inhibition.


Molecular and Cellular Biology | 2006

Recruitment of the Histone Methyltransferase SUV39H1 and Its Role in the Oncogenic Properties of the Leukemia-Associated PML-Retinoic Acid Receptor Fusion Protein

Roberta Carbone; Oronza A. Botrugno; Simona Ronzoni; Alessandra Insinga; Luciano Di Croce; Pier Giuseppe Pelicci; Saverio Minucci

ABSTRACT Leukemia-associated fusion proteins establish aberrant transcriptional programs, which result in the block of hematopoietic differentiation, a prominent feature of the leukemic phenotype. The dissection of the mechanisms of deregulated transcription by leukemia fusion proteins is therefore critical for the design of tailored antileukemic strategies, aimed at reestablishing the differentiation program of leukemic cells. The acute promyelocytic leukemia (APL)-associated fusion protein PML-retinoic acid receptor (RAR) behaves as an aberrant transcriptional repressor, due to its ability to induce chromatin modifications (histone deacetylation and DNA methylation) and silencing of PML-RAR target genes. Here, we indicate that the ultimate result of PML-RAR action is to impose a heterochromatin-like structure on its target genes, thereby establishing a permanent transcriptional silencing. This effect is mediated by the previously described association of PML-RAR with chromatin-modifying enzymes (histone deacetylases and DNA methyltransferases) and by recruitment of the histone methyltransferase SUV39H1, responsible for trimethylation of lysine 9 of histone H3.


Proceedings of the National Academy of Sciences of the United States of America | 2013

DNA damage in stem cells activates p21, inhibits p53, and induces symmetric self-renewing divisions

Alessandra Insinga; Angelo Cicalese; Mario Faretta; Barbara Gallo; Luisa Albano; Simona Ronzoni; Laura Furia; Andrea Viale; Pier Giuseppe Pelicci

DNA damage leads to a halt in proliferation owing to apoptosis or senescence, which prevents transmission of DNA alterations. This cellular response depends on the tumor suppressor p53 and functions as a powerful barrier to tumor development. Adult stem cells are resistant to DNA damage-induced apoptosis or senescence, however, and how they execute this response and suppress tumorigenesis is unknown. We show that irradiation of hematopoietic and mammary stem cells up-regulates the cell cycle inhibitor p21, a known target of p53, which prevents p53 activation and inhibits p53 basal activity, impeding apoptosis and leading to cell cycle entry and symmetric self-renewing divisions. p21 also activates DNA repair, limiting DNA damage accumulation and self-renewal exhaustion. Stem cells with moderate DNA damage and diminished self-renewal persist after irradiation, however. These findings suggest that stem cells have evolved a unique, p21-dependent response to DNA damage that leads to their immediate expansion and limits their long-term survival.

Collaboration


Dive into the Simona Ronzoni's collaboration.

Top Co-Authors

Avatar

Pier Giuseppe Pelicci

European Institute of Oncology

View shared research outputs
Top Co-Authors

Avatar

Saverio Minucci

European Institute of Oncology

View shared research outputs
Top Co-Authors

Avatar

Mario Faretta

European Institute of Oncology

View shared research outputs
Top Co-Authors

Avatar

Eugenio Erba

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar

Daniele Bergamaschi

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Alessandra Insinga

European Institute of Oncology

View shared research outputs
Top Co-Authors

Avatar

Maurizio D'Incalci

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar

Silvia Monestiroli

European Institute of Oncology

View shared research outputs
Top Co-Authors

Avatar

Andrea Viale

European Institute of Oncology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge