Mario Felice Tecce
University of Salerno
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mario Felice Tecce.
Oncology | 2004
Maria Notarnicola; Caterina Messa; Aldo Cavallini; Maurizio Bifulco; Mario Felice Tecce; Davide Eletto; Alfredo Di Leo; Severino Montemurro; Chiara Laezza; Maria Gabriella Caruso
Objective: Farnesyl diphosphate synthase (FPPs) produces FPP which is considered a branch-point intermediate in the synthesis of sterols and isoprenylated cellular metabolites. In this study we investigated whether detectable FPPs activity was present in human colorectal cancer (CRC), also evaluating in vitro the role of this enzyme in the growth and apoptosis of CRC cells by using Pamidronate (PAM), a FPPs activity inhibitor. Methods: The activity level of FPPs was determined in CRC and the normal surrounding mucosa of 50 patients by radiochemical assay. The FPPs mRNA expression was investigated in 15 of 50 patients by quantitative reverse transcriptase polymerase chain reaction (RT-PCR). K-ras mutation was evaluated using PCR and restriction enzyme analysis. Cell growth and apoptosis, after PAM treatment, in human CRC cell line DLD-1 were measured by MTT test and DNA fragmentation, respectively. Results: FPPs activity was detectable in human CRC. FPPs activity and its mRNA were significantly more abundant in cancer samples than in normal mucosa. In vitro PAM resulted in a significant reduction of cell growth and also gave rise to a marked proapoptotic effect. Conclusions: This study provides the first evidence of the presence of FPPs activity in human CRC. Moreover, FPPs enzyme was found to play a significant role in colon cancer proliferation.
Journal of Cellular Physiology | 2011
Mariella Caputo; Hylde Zirpoli; Gaetano Torino; Mario Felice Tecce
We evaluated, in human cell line HepG2, the action of individual dietary polyunsaturated fatty acids (PUFAs) on the expression of several lipid metabolism genes. The effects of docosahexaenoic acid, 22:6, n‐3 (DHA), eicosapentaenoic acid, 20:5, n‐3 (EPA), and arachidonic acid, 20:4, n‐6 (AA) were studied alone and with vitamin E (Vit.E). DHA, EPA, and AA down‐regulated mRNAs and encoded proteins of stearoyl‐CoA desaturase (SCD) and sterol regulatory element binding protein (SREBP‐1c), two major factors involved in unsaturated fatty acids synthesis. DHA affected SREBP‐1c mRNA less markedly than EPA and AA. Vit.E did not affect these products, both when individually added or together with fatty acids. The expression of UDP‐glucuronosyl transferase 1A1 (UGT1A1) mRNA, an enzyme of phase II drug metabolism with relevant actions within lipid metabolism, resulted also differentially regulated. DHA did not essentially reduce UGT1A1 mRNA expression while EPA and AA produced a considerable decrease. Nevertheless, when these PUFAs were combined with Vit.E, which by itself did not produce any effect, the result was a reduction of UGT1A1 mRNA with DHA, an increase reverting to basal level with EPA and no variation with AA. Observed regulations did not result to be mediated by peroxisome proliferator‐activated receptor (PPAR). Our data indicate that major dietary PUFAs and Vit.E are differentially and selectively able to affect the expression of genes involved in lipid metabolism. The different actions of these slightly different molecules could be associated with their physiological role as relevant nutrient molecules. J. Cell. Physiol. 226: 187–193, 2010.
The Open Biochemistry Journal | 2010
Chiara Gallo; Paolo Renzi; Stefano Loizzo; Alberto Loizzo; Sonia Piacente; Michela Festa; Mariella Caputo; Mario Felice Tecce; Anna Capasso
There have been a few studies that examined the oxidative stress effects of nicotine during pregnancy and lactation. The adverse effect of prenatal smoking exposure on human fetal development and growth has been a major public health issue. Active or passive smoking during pregnancy can result in a wide variety of adverse outcomes, including intrauterine growth retardation (IUGR), prematurity, stillbirth, and the sudden infant death syndrome. Smoking in pregnancy has also been associated with an increased risk of attention deficit and learning problems in childhood. Some studies argued that as a principal component of tobacco smoke, nicotine alone is responsible for the majority of negative reproductive outcomes. Nicotine and its major metabolite cotinine can cross the placental barrier. The level of nicotine in fetal tissues was found to be equal to or greater than the plasma nicotine level in the mothers. The oxidative stress induce by nicotine has been increasingly postulated as a major contributor to endothelial dysfunction. A large body of research has investigated the potential role of antioxidant nutrients in the prevention of endothelial dysfunction in women. Therefore, the present study was undertaken to assess the potential benefit of antioxidant supplementation on markers of placental oxidative stress in an in vitro model of endothelial dysfunction induced by nicotine, since it was previously found that nicotine is able to trigger the placental secretion of stress molecules. In this regard, we evaluated the effects of vitamin C, vitamin E and N-acetylcysteine (NAC), alone or in combination, in placental villi culture after exposure to nicotine. The effect of antioxidant nutrients on trophoblast cells proliferation and vitality was also evaluated. The results obtained suggest that in a patho-physiological condition, such as endothelial dysfunction induced by nicotine, the deleterious effect of reactive oxygen species may be counteracted by an antioxidant therapy, and there is the need to investigate the optimum dosing and timing of antioxidants administration, since an inappropriate antioxidant treatment in pregnant women may have deleterious consequences, reducing placental cells proliferation until to cell death.
Molecules | 2017
Tania Rescigno; Luigina Micolucci; Mario Felice Tecce; Anna Capasso
The increased life expectancy and the expansion of the elderly population are stimulating research into aging. Aging may be viewed as a multifactorial process that results from the interaction of genetic and environmental factors, which include lifestyle. Human molecular processes are influenced by physiological pathways as well as exogenous factors, which include the diet. Dietary components have substantive effects on metabolic health; for instance, bioactive molecules capable of selectively modulating specific metabolic pathways affect the development/progression of cardiovascular and neoplastic disease. As bioactive nutrients are increasingly identified, their clinical and molecular chemopreventive effects are being characterized and systematic analyses encompassing the “omics” technologies (transcriptomics, proteomics and metabolomics) are being conducted to explore their action. The evolving field of molecular pathological epidemiology has unique strength to investigate the effects of dietary and lifestyle exposure on clinical outcomes. The mounting body of knowledge regarding diet-related health status and disease risk is expected to lead in the near future to the development of improved diagnostic procedures and therapeutic strategies targeting processes relevant to nutrition. The state of the art of aging and nutrigenomics research and the molecular mechanisms underlying the beneficial effects of bioactive nutrients on the main aging-related disorders are reviewed herein.
Current Drug Safety | 2011
Giuseppina Galano; Mariella Caputo; Mario Felice Tecce; Anna Capasso
Vinorelbine (VRN) is one of the most representative compounds of its class: the vinca alkaloids. VRN interferes with microtubule assembly. VRN shows a better therapeutic index than the parent compound vincristine and vinblastine probably because of its higher affinity for mitotic microtubules. VNR high affinity for mitotic microtubules causes a high clinical efficacy for the treatment of non-small cell lung cancer (NSCLC) and for breast cancer (BC), together with a good tolerability at therapeutically effective doses. The vinca alkaloids are structurally similar compounds comprised of 2 multiringed units, vindoline and catharanthine. Unlike other vinca alkaloids, the catharanthine unit is the site of structural modification for VRN. The antitumor activity of VNR is thought to be due primarily to inhibition of mitosis at metaphase through its interaction with tubulin. Like other vinca alkaloids, VNR may also interfere with: 1) amino acid, cyclic AMP, and glutathione metabolism, 2) calmodulin-dependent Ca²⁺-transport ATPase activity, 3) cellular respiration, and 4) nucleic acid and lipid biosynthesis. The VNR is also characterized by improved hematologic tolerance and less neurotoxicity compared to parent compound. The aim of this review is 1) to explore the efficacy and tolerability of VNR in cancer therapy and 2) to examine the more recent approaches to improve the efficacy and tolerability of VNR in cancer therapy.
International Journal of Endocrinology | 2015
Maurizio Montella; Giovanni D'Arena; Anna Crispo; Mario Capunzo; Flavia Nocerino; Maria Grimaldi; Antonio Barbieri; Anna Maria D'Ursi; Mario Felice Tecce; Alfonso Amore; Massimiliano Galdiero; Gennaro Ciliberto; Aldo Giudice
Infection with hepatitis B virus (HBV) is a major risk factor for hepatocellular carcinoma (HCC) in developed countries. Epidemiological reports indicate that the incidence of HBV-related HCC is higher in males and postmenopausal females than other females. Increasing evidence suggests that sex hormones such as androgens and estrogens play an important role in the progression of an HBV infection and in the development of HBV-related HCC. While androgen is supposed to stimulate the androgen signaling pathway and cooperate to the increased transcription and replication of HBV genes, estrogen may play a protecting role against the progression of HBV infections and in the development of HBV-related HCC through decreasing HBV RNA transcription and inflammatory cytokines levels. Additionally, sex hormones can also affect HBV-related hepatocarcinogenesis by inducing epigenetic changes such as the regulation of mRNA levels by microRNAs (miRNAs), DNA methylation, and histone modification in liver tissue. This review describes the molecular mechanisms underlying the gender disparity in HBV-related HCC with the aim of improving the understanding of key factors underneath the sex disparity often observed in HBV infections. Furthermore, the review will propose more effective prevention strategies and treatments of HBV-derived diseases.
Oxidative Medicine and Cellular Longevity | 2016
Aldo Giudice; Giovanni D'Arena; Anna Crispo; Mario Felice Tecce; Flavia Nocerino; Maria Grimaldi; Emanuela Rotondo; Anna Maria D'Ursi; Mario Scrima; Massimiliano Galdiero; Gennaro Ciliberto; Mario Capunzo; Gianluigi Franci; Antonio Barbieri; Sabrina Bimonte; Maurizio Montella
MicroRNAs are short (21–23 nucleotides), noncoding RNAs that typically silence posttranscriptional gene expression through interaction with target messenger RNAs. Currently, miRNAs have been identified in almost all studied multicellular eukaryotes in the plant and animal kingdoms. Additionally, recent studies reported that miRNAs can also be encoded by certain single-cell eukaryotes and by viruses. The vast majority of viral miRNAs are encoded by the herpesviruses family. These DNA viruses including Epstein-Barr virus encode their own miRNAs and/or manipulate the expression of cellular miRNAs to facilitate respective infection cycles. Modulation of the control pathways of miRNAs expression is often involved in the promotion of tumorigenesis through a specific cascade of transduction signals. Notably, latent infection with Epstein-Barr virus is considered liable of causing several types of malignancies, including the majority of gastric carcinoma cases detected worldwide. In this review, we describe the role of the Epstein-Barr virus in gastric carcinogenesis, summarizing the functions of the Epstein-Barr virus-encoded viral proteins and related epigenetic alterations as well as the roles of Epstein-Barr virus-encoded and virally modulated cellular miRNAs.
Journal of Cellular Physiology | 2016
Tania Rescigno; Anna Capasso; Mario Felice Tecce
n‐3 polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), abundant in fish, have been shown to affect development and progression of some types of cancer, including breast cancer. The aim of our study was to further analyze and clarify the effects of these nutrients on the molecular mechanisms underlying breast cancer. Following treatments with DHA we examined cell viability, death, cell cycle, and some molecular effects in breast cell lines with different transformation, phenotypic, and biochemical characteristics (MCF‐10A, MCF‐7, SK‐BR‐3, ZR‐75‐1). These investigations showed that DHA is able to affect cell viability, proliferation, and cell cycle progression in a different way in each assayed breast cell line. The activation of ERK1/2 and STAT3 pathways and the expression and/or activation of molecules involved in cell cycle regulation such as p21Waf1/Cip1 and p53, are very differently regulated by DHA treatments in each cell model. DHA selectively: (i) arrests non tumoral MCF‐10A breast cells in G0/G1 cycle phase, activating p21Waf1/Cip1, and p53, (ii) induces to death highly transformed breast cells SK‐BR‐3, reducing ERK1/2 and STAT3 phosphorylation and (iii) only slightly affects each analyzed process in MCF‐7 breast cell line with transformation degree lower than SK‐BR‐3 cells. These findings suggest a more relevant inhibitory role of DHA within early development and late progression of breast cancer cell transformation and a variable effect in the other phases, depending on individual molecular properties and degree of malignancy of each clinical case. J. Cell. Physiol. 231: 1226–1236, 2016.
Current Drug Targets | 2011
Mariella Caputo; Hylde Zirpoli; R Di Benedetto; K De Nadai; Mario Felice Tecce
Vision loss secondary to Choroidal Neovascularization (CNV) is becoming a major disease condition in developed world. CNV is typically secondary to Age-related Macular Degeneration (AMD) and these conditions are major, and also substantially increasing, causes of blindness among aged people. Several therapeutic options are currently available to treat CNV with variable efficacy on disease progress. Among existing treatments there are laser photocoagulation, photodynamic therapies, local corticosteroids and, more recently, the use of anti-angiogenic factors. Although by these treatments very effective results are obtained and their further improvement is still possible, it is also reasonable and necessary to look for more successful and definitive alternatives. The research in this direction is already very active and it can be expected that applications of the more recent molecular technologies will bring important advances also for CNV. These will likely regard the use of gene therapy and of new target specific factors. Gene therapies methodologies are rapidly becoming closer to current clinical use and, since the eye is a particularly favourable organ for drug delivery, their ocular use is probably going to be among the first successful applications of these techniques. In addition to its specific technology, gene therapy requires the knowledge of specific genes to be modulated to adequately affect pathogenesis and progression of the disease in which has to be applied. This will also be true for the use of novel target specific drugs such as antibodies and other molecules able to affect cellular factors and pathways also related to disease development. For this reason, a major direction of future CNV therapies will be the identification of specific gene, gene products, metabolic pathways and metabolites related to the disease. This information, in addition to be suitable for gene and target specific therapies, will also allow the development of new procedures to improve diagnosis and/or prognostic evaluation of the disease.
Cell Biochemistry and Function | 2014
Mariella Caputo; Maria Caterina De Rosa; Tania Rescigno; Hylde Zirpoli; Antonio Vassallo; Nunziatina De Tommasi; Gaetano Torino; Mario Felice Tecce
Stearoyl‐CoA desaturase 1 (SCD1) is the rate limiting enzyme in unsaturated fatty acid biosynthesis. This enzyme has an important role in the regulation of hepatic lipogenesis and lipid oxidation, and alterations in these pathways may lead to several diseases. We examined, in HepG2 cell cultures, the mechanism of SCD1 regulation considering the involvement of two transcription factors: liver X receptor alpha (LXRα) and sterol regulatory element‐binding protein‐1 (SREBP‐1), also investigating the effect of dietary polyunsaturated fatty acids (PUFAs) on this process. The analysis of SCD1 promoter allowed to identify a functional SREBP‐1 binding site (SRE 1). LXRα activation increased SCD1 protein level through upregulation of SREBP‐1 and its consequent binding to SRE 1 sequence. Polyunsaturated docosahexaenoic acid (DHA, C22:6), eicosapentaenoic acid (EPA, C20:5) and arachidonic acid (AA, C20:4) were able to reduce SREBP‐1 binding to SCD1 promoter, while saturated stearic acid (SA, C18:0) did not give any effect. Surface plasmon resonance analysis showed a direct binding of DHA, EPA and AA to LXRα. These data indicate a direct inhibitory interaction of PUFAs with LXRα, a consequent reduction of SREBP‐1 and of its binding to SCD1 promoter. This information provides a mechanism to explain the regulation of lipogenic pathways induced by PUFAs. Copyright