Mario Herrero
Commonwealth Scientific and Industrial Research Organisation
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mario Herrero.
Science | 2013
Tara Garnett; M.C. Appleby; Andrew Balmford; Ian J. Bateman; Tim G. Benton; P. Bloomer; Barbara Burlingame; Marian Stamp Dawkins; Liam Dolan; D. Fraser; Mario Herrero; Irene Hoffmann; Pete Smith; Philip K. Thornton; Camilla Toulmin; Sonja J. Vermeulen; H. C. J. Godfray
Clearer understanding is needed of the premises underlying SI and how it relates to food-system priorities. Food security is high on the global policy agenda. Demand for food is increasing as populations grow and gain wealth to purchase more varied and resource-intensive diets. There is increased competition for land, water, energy, and other inputs into food production. Climate change poses challenges to agriculture, particularly in developing countries (1), and many current farming practices damage the environment and are a major source of greenhouse gases (GHG). In an increasingly globalized world, food insecurity in one region can have widespread political and economic ramifications (2).
Science | 2010
Mario Herrero; Philip K. Thornton; An Maria Omer Notenbaert; S. Wood; Siwa Msangi; H.A. Freeman; Deborah A. Bossio; J. Dixon; Michael Peters; J.A. van de Steeg; J. Lynam; P. Parthasarathy Rao; S. Macmillan; B. Gerard; John J. McDermott; C. Seré; Mark W. Rosegrant
Farmers in mixed crop-livestock systems produce about half of the world’s food. In small holdings around the world, livestock are reared mostly on grass, browse, and nonfood biomass from maize, millet, rice, and sorghum crops and in their turn supply manure and traction for future crops. Animals act as insurance against hard times and supply farmers with a source of regular income from sales of milk, eggs, and other products. Thus, faced with population growth and climate change, small-holder farmers should be the first target for policies to intensify production by carefully managed inputs of fertilizer, water, and feed to minimize waste and environmental impact, supported by improved access to markets, new varieties, and technologies.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Mario Herrero; Petr Havlik; Hugo Valin; An Maria Omer Notenbaert; Mariana C. Rufino; Philip K. Thornton; Michael Blümmel; F. Weiss; Delia Grace; Michael Obersteiner
Significance This report is unique in presenting a high-resolution dataset of biomass use, production, feed efficiencies, and greenhouse gas emissions by global livestock. This information will allow the global-change research community in enhancing our understanding of the sustainability of livestock systems and their role in food security, livelihoods and environmental sustainability. We present a unique, biologically consistent, spatially disaggregated global livestock dataset containing information on biomass use, production, feed efficiency, excretion, and greenhouse gas emissions for 28 regions, 8 livestock production systems, 4 animal species (cattle, small ruminants, pigs, and poultry), and 3 livestock products (milk, meat, and eggs). The dataset contains over 50 new global maps containing high-resolution information for understanding the multiple roles (biophysical, economic, social) that livestock can play in different parts of the world. The dataset highlights: (i) feed efficiency as a key driver of productivity, resource use, and greenhouse gas emission intensities, with vast differences between production systems and animal products; (ii) the importance of grasslands as a global resource, supplying almost 50% of biomass for animals while continuing to be at the epicentre of land conversion processes; and (iii) the importance of mixed crop–livestock systems, producing the greater part of animal production (over 60%) in both the developed and the developing world. These data provide critical information for developing targeted, sustainable solutions for the livestock sector and its widely ranging contribution to the global food system.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Junguo Liu; Liangzhi You; Manouchehr Amini; Michael Obersteiner; Mario Herrero; Alexander J.B. Zehnder; Hong Yang
Crop production is the single largest cause of human alteration of the global nitrogen cycle. We present a comprehensive assessment of global nitrogen flows in cropland for the year 2000 with a spatial resolution of 5 arc-minutes. We calculated a total nitrogen input (IN) of 136.60 trillion grams (Tg) of N per year, of which almost half is contributed by mineral nitrogen fertilizers, and a total nitrogen output (OUT) of 148.14 Tg of N per year, of which 55% is uptake by harvested crops and crop residues. We present high-resolution maps quantifying the spatial distribution of nitrogen IN and OUT flows, soil nitrogen balance, and surface nitrogen balance. The high-resolution data are aggregated at the national level on a per capita basis to assess nitrogen stress levels. The results show that almost 80% of African countries are confronted with nitrogen scarcity or nitrogen stress problems, which, along with poverty, cause food insecurity and malnutrition. The assessment also shows a global average nitrogen recovery rate of 59%, indicating that nearly two-fifths of nitrogen inputs are lost in ecosystems. More effective management of nitrogen is essential to reduce the deleterious environmental consequences.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Petr Havlik; Hugo Valin; Mario Herrero; Michael Obersteiner; Erwin Schmid; Mariana C. Rufino; A. Mosnier; Philip K. Thornton; Hannes Böttcher; Richard T. Conant; Stefan Frank; Steffen Fritz; Sabine Fuss; F. Kraxner; An Maria Omer Notenbaert
Significance The livestock sector contributes significantly to global warming through greenhouse gas (GHG) emissions. At the same time, livestock is an invaluable source of nutrition and livelihood for millions of poor people. Therefore, climate mitigation policies involving livestock must be designed with extreme care. Here we demonstrate the large mitigation potential inherent in the heterogeneity of livestock production systems. We find that even within existing systems, autonomous transitions from extensive to more productive systems would decrease GHG emissions and improve food availability. Most effective climate policies involving livestock would be those targeting emissions from land-use change. To minimize the economic and social cost, policies should target emissions at their source—on the supply side—rather than on the demand side. Livestock are responsible for 12% of anthropogenic greenhouse gas emissions. Sustainable intensification of livestock production systems might become a key climate mitigation technology. However, livestock production systems vary substantially, making the implementation of climate mitigation policies a formidable challenge. Here, we provide results from an economic model using a detailed and high-resolution representation of livestock production systems. We project that by 2030 autonomous transitions toward more efficient systems would decrease emissions by 736 million metric tons of carbon dioxide equivalent per year (MtCO2e⋅y−1), mainly through avoided emissions from the conversion of 162 Mha of natural land. A moderate mitigation policy targeting emissions from both the agricultural and land-use change sectors with a carbon price of US
Global Change Biology | 2014
Philip K. Thornton; Polly J. Ericksen; Mario Herrero; Andrew J. Challinor
10 per tCO2e could lead to an abatement of 3,223 MtCO2e⋅y−1. Livestock system transitions would contribute 21% of the total abatement, intra- and interregional relocation of livestock production another 40%, and all other mechanisms would add 39%. A comparable abatement of 3,068 MtCO2e⋅y−1 could be achieved also with a policy targeting only emissions from land-use change. Stringent climate policies might lead to reductions in food availability of up to 200 kcal per capita per day globally. We find that mitigation policies targeting emissions from land-use change are 5 to 10 times more efficient—measured in “total abatement calorie cost”—than policies targeting emissions from livestock only. Thus, fostering transitions toward more productive livestock production systems in combination with climate policies targeting the land-use change appears to be the most efficient lever to deliver desirable climate and food availability outcomes.
Agricultural Systems | 2001
Philip K. Thornton; Mario Herrero
The focus of the great majority of climate change impact studies is on changes in mean climate. In terms of climate model output, these changes are more robust than changes in climate variability. By concentrating on changes in climate means, the full impacts of climate change on biological and human systems are probably being seriously underestimated. Here, we briefly review the possible impacts of changes in climate variability and the frequency of extreme events on biological and food systems, with a focus on the developing world. We present new analysis that tentatively links increases in climate variability with increasing food insecurity in the future. We consider the ways in which people deal with climate variability and extremes and how they may adapt in the future. Key knowledge and data gaps are highlighted. These include the timing and interactions of different climatic stresses on plant growth and development, particularly at higher temperatures, and the impacts on crops, livestock and farming systems of changes in climate variability and extreme events on pest-weed-disease complexes. We highlight the need to reframe research questions in such a way that they can provide decision makers throughout the food system with actionable answers, and the need for investment in climate and environmental monitoring. Improved understanding of the full range of impacts of climate change on biological and food systems is a critical step in being able to address effectively the effects of climate variability and extreme events on human vulnerability and food security, particularly in agriculturally based developing countries facing the challenge of having to feed rapidly growing populations in the coming decades.
Global Change Biology | 2015
Steffen Fritz; Linda See; Ian McCallum; Liangzhi You; Andriy Bun; Elena Moltchanova; Martina Duerauer; Fransizka Albrecht; C. Schill; Christoph Perger; Petr Havlik; A. Mosnier; Philip K. Thornton; Ulrike Wood-Sichra; Mario Herrero; Inbal Becker-Reshef; Christopher O. Justice; Matthew C. Hansen; Peng Gong; Sheta Abdel Aziz; Anna Cipriani; Renato Cumani; Giuliano Cecchi; Giulia Conchedda; Stefanus Ferreira; Adriana Gomez; Myriam Haffani; François Kayitakire; Jaiteh Malanding; Rick Mueller
Abstract Despite the fact that many smallholder farming systems in developing countries revolve around the interactions of crop and livestock enterprises, the modelling of these systems using combinations of detailed crop and livestock models is comparatively under-developed. A wide variety of separate crop and livestock models exists, but the nature of crop–livestock interactions, and their importance in smallholder farming systems, makes their integration difficult. Even where there is adequate understanding of the biophysical processes involved, integrated crop–livestock models may be constrained by lack of reliable data for calibration and validation. The construction from scratch of simulation models that meet the needs of one particular case is generally too costly to countenance. As for all modelling activity, the most efficient way to proceed depends on the nature of the systems under study and the precise questions that have to be addressed. We outline a framework for the integration of detailed biophysical crop and livestock simulation models. We highlight the need for minimum calibration and validation data sets, and conclude by listing various research problems that need attention. The application of robust and trustworthy crop–livestock models is critical for furthering the research agenda associated with animal agriculture in the tropics and subtropics.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Mario Herrero; Philip K. Thornton
A new 1 km global IIASA-IFPRI cropland percentage map for the baseline year 2005 has been developed which integrates a number of individual cropland maps at global to regional to national scales. The individual map products include existing global land cover maps such as GlobCover 2005 and MODIS v.5, regional maps such as AFRICOVER and national maps from mapping agencies and other organizations. The different products are ranked at the national level using crowdsourced data from Geo-Wiki to create a map that reflects the likelihood of cropland. Calibration with national and subnational crop statistics was then undertaken to distribute the cropland within each country and subnational unit. The new IIASA-IFPRI cropland product has been validated using very high-resolution satellite imagery via Geo-Wiki and has an overall accuracy of 82.4%. It has also been compared with the EarthStat cropland product and shows a lower root mean square error on an independent data set collected from Geo-Wiki. The first ever global field size map was produced at the same resolution as the IIASA-IFPRI cropland map based on interpolation of field size data collected via a Geo-Wiki crowdsourcing campaign. A validation exercise of the global field size map revealed satisfactory agreement with control data, particularly given the relatively modest size of the field size data set used to create the map. Both are critical inputs to global agricultural monitoring in the frame of GEOGLAM and will serve the global land modelling and integrated assessment community, in particular for improving land use models that require baseline cropland information. These products are freely available for downloading from the http://cropland.geo-wiki.org website.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Philip K. Thornton; Mario Herrero
The global food system is experiencing profound changes as a result of anthropogenic pressures. The ever-increasing human population (more than 9 billion by 2050), together with changes in consumption patterns (i.e., increasing demand for livestock products) caused by urbanization, increasing incomes, and nutritional and environmental concerns, is shaping what we eat, who eats, and how much, more than ever. The double burdens of nutrition (overconsumption and undernutrition), together with the need to reduce the impacts of climate change, are defining research agendas, affecting policies, and modifying conceptions about food in different ways around the world (1, 2) and have been the topic of other recent Special Features in PNAS (3, 4). Against this background, the global food system that will have to improve its resource use efficiency and environmental performance significantly to ensure the sustainability of global food production and consumption. Livestock, the largest land use sector on Earth, is an important part of this puzzle. Many solutions to the challenges of feeding the world sustainably lie in how we manage this sector. The demand for livestock products is projected to grow substantially in the coming decades (5). This growth will be driven by increasing populations, economic growth, and rapid urbanization in many parts of the developing world. The main conclusions from such projections is that a shift to diets with more animal products and fats is likely to happen, mostly in the developing world, as a result of increased incomes and urbanization (6). Although the consumption per capita of cereals is likely to stabilize, population growth will increase the total quantities of both meat (almost doubling) and cereals (50%) needed to … [↵][1]1To whom correspondence should be addressed. E-mail: mario.herrero{at}csiro.au. [1]: #xref-corresp-1-1