Mario Lebrato
University of Kiel
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mario Lebrato.
PLOS ONE | 2014
Scarlett Sett; Lennart T. Bach; Kai G. Schulz; Signe Koch-Klavsen; Mario Lebrato; Ulf Riebesell
Increasing atmospheric CO2 concentrations are expected to impact pelagic ecosystem functioning in the near future by driving ocean warming and acidification. While numerous studies have investigated impacts of rising temperature and seawater acidification on planktonic organisms separately, little is presently known on their combined effects. To test for possible synergistic effects we exposed two coccolithophore species, Emiliania huxleyi and Gephyrocapsa oceanica, to a CO2 gradient ranging from ∼0.5–250 µmol kg−1 (i.e. ∼20–6000 µatm pCO2) at three different temperatures (i.e. 10, 15, 20°C for E. huxleyi and 15, 20, 25°C for G. oceanica). Both species showed CO2-dependent optimum-curve responses for growth, photosynthesis and calcification rates at all temperatures. Increased temperature generally enhanced growth and production rates and modified sensitivities of metabolic processes to increasing CO2. CO2 optimum concentrations for growth, calcification, and organic carbon fixation rates were only marginally influenced from low to intermediate temperatures. However, there was a clear optimum shift towards higher CO2 concentrations from intermediate to high temperatures in both species. Our results demonstrate that the CO2 concentration where optimum growth, calcification and carbon fixation rates occur is modulated by temperature. Thus, the response of a coccolithophore strain to ocean acidification at a given temperature can be negative, neutral or positive depending on that strains temperature optimum. This emphasizes that the cellular responses of coccolithophores to ocean acidification can only be judged accurately when interpreted in the proper eco-physiological context of a given strain or species. Addressing the synergistic effects of changing carbonate chemistry and temperature is an essential step when assessing the success of coccolithophores in the future ocean.
Hydrobiologia | 2012
Mario Lebrato; Kylie Anne Pitt; A. K. Sweetman; Daniel O.B. Jones; Joan Enric Cartes; Andreas Oschlies; Robert H. Condon; Juan Carlos Molinero; Laetitia B. Adler; Christian Gaillard; Domingo Lloris; David S.M. Billett
The biological pump describes the transport of particulate matter from the sea surface to the ocean’s interior including the seabed. The contribution by gelatinous zooplankton bodies as particulate organic matter (POM) vectors (“jelly-falls”) has been neglected owing to technical and spatiotemporal sampling limitations. Here, we assess the existing evidence on jelly-falls from early ocean observations to present times. The seasonality of jelly-falls indicates that they mostly occur after periods of strong upwelling and/or spring blooms in temperate/subpolar zones and during late spring/early summer. A conceptual model helps to define a jelly-fall based on empirical and field observations of biogeochemical and ecological processes. We then compile and discuss existing strategic and observational oceanographic techniques that could be implemented to further jelly-falls research. Seabed video- and photography-based studies deliver the best results, and the correct use of fishing techniques, such as trawling, could provide comprehensive regional datasets. We conclude by considering the possibility of increased gelatinous biomasses in the future ocean induced by upper ocean processes favouring their populations, thus increasing jelly-POM downward transport. We suggest that this could provide a “natural compensation” for predicted losses in pelagic POM with respect to fuelling benthic ecosystems.
Global Biogeochemical Cycles | 2016
Mario Lebrato; Andreas J. Andersson; Justin B. Ries; Richard B. Aronson; Miles D. Lamare; Wolfgang Koeve; Andreas Oschlies; M. D. Iglesias-Rodriguez; Sven Thatje; Margaret O. Amsler; Stephanie C. Vos; Daniel O.B. Jones; Henry A. Ruhl; A.R. Gates; James B. McClintock
Ocean acidification and decreasing seawater saturation state with respect to calcium carbonate (CaCO3) minerals have raised concerns about the consequences to marine organisms that build CaCO3 structures. A large proportion of benthic marine calcifiers incorporate Mg2+ into their skeletons (Mg-calcite), which, in general, reduces mineral stability. The relative vulnerability of some marine calcifiers to ocean acidification appears linked to the relative solubility of their shell or skeletal mineralogy, although some organisms have sophisticated mechanisms for constructing and maintaining their CaCO3 structures causing deviation from this dependence. Nevertheless, few studies consider seawater saturation state with respect to the actual Mg-calcite mineralogy (ΩMg-x) of a species when evaluating the effect of ocean acidification on that species. Here, a global dataset of skeletal mole % MgCO3 of benthic calcifiers and in situ environmental conditions spanning a depth range of 0 m (subtidal/neritic) to 5600 m (abyssal) was assembled to calculate in situ ΩMg-x. This analysis shows that 24% of the studied benthic calcifiers currently experience seawater mineral undersaturation (ΩMg-x < 1). As a result of ongoing anthropogenic ocean acidification over the next 200 to 3000 years, the predicted decrease in seawater mineral saturation will expose approximately 57% of all studied benthic calcifying species to seawater undersaturation. These observations reveal a surprisingly high proportion of benthic marine calcifiers exposed to seawater that is undersaturated with respect to their skeletal mineralogy, underscoring the importance of using species-specific seawater mineral saturation states when investigating the impact of CO2-induced ocean acidification on benthic marine calcification.
Ecology | 2013
Mario Lebrato; James B. McClintock; Margaret O. Amsler; Justin B. Ries; H. Egilsdottir; Miles D. Lamare; Charles D. Amsler; R. C. Challener; J. B. Schram; Christopher L. Mah; J. Cuce; Bill J. Baker
Biogenic carbonate production in benthic marine ecosystems is dominated by representatives of the Echinodermata. Carbon and other major, minor, and trace elements are exported to the seabed where they accumulate or dissolve. Preserved carbonates (Mg-calcite) have applications in oceanography and geochemistry and are used to reconstruct various parameters of ancient seawater, such as temperature (from Mg/Ca, Sr/Ca), seawater Mg/Ca (from Mg/Ca), and pH (from B/Ca). In general, the benthos is widely ignored for its role in the global carbon cycle despite the importance of echinoderms as a carbon sink (∼0.1–0.2 Pg C/yr). Echinoderms produce their skeletons from Mg-calcite, which is more soluble than pure calcite and, therefore, more vulnerable to ocean acidification (OA). Minor and trace elements can also destabilize the calcite lattice, increasing the minerals solubility. Little is known about the concentration of such elements in echinoderm tests. Expanding our knowledge on echinoderm skeleton composition will improve our understanding of elemental flux in the oceans. Furthermore, establishing relationships between the physical parameters of seawater and minor/trace elemental ratios within echinoderm Mg-calcite should expand the utility of fossils as geochemical archives. Herein, we present elemental composition data for Asteroidea (n = 108; 9 families, 23 species), Echinoidea (n = 94; 8 families, 12 species), Ophiuroidea (n = 24; 4 families, 5 species), Holothuroidea (n = 7; 3 families, 3 species), and Crinoidea (n = 3; 1 family, 1 species), collected from the Arctic to the Antarctic oceans, from depths ranging from surface waters to 1200 m. The following elements were measured and normalized to [Ca]: Li, Be, Mg, Al, P, S, K, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Rb, Sr, Y, Zr, Mo, Ag, Cd, Sn, Sb, Te, Ba, La, Ce, Nd, Dy, W, Re, Au, Hg, Tl, Pb, Bi, and U. Data are presented for the whole body, arms (plates), calcareous ossicles, spines, and test plates. Elements were quantified using inductively coupled plasma mass spectrometry. Our study presents the most comprehensive data set to date for a phylum whose skeletons are composed of Mg-calcite.
Science Advances | 2017
Travis A. Courtney; Mario Lebrato; Nicholas R. Bates; Andrew Collins; Samantha J. de Putron; Rebecca Garley; R.J. Johnson; Juan-Carlos Molinero; Timothy J. Noyes; Christopher L. Sabine; Andreas J. Andersson
In situ coral calcification was primarily controlled by temperature and relatively insensitive to seawater CO2 chemistry. Modern reef-building corals sustain a wide range of ecosystem services because of their ability to build calcium carbonate reef systems. The influence of environmental variables on coral calcification rates has been extensively studied, but our understanding of their relative importance is limited by the absence of in situ observations and the ability to decouple the interactions between different properties. We show that temperature is the primary driver of coral colony (Porites astreoides and Diploria labyrinthiformis) and reef-scale calcification rates over a 2-year monitoring period from the Bermuda coral reef. On the basis of multimodel climate simulations (Coupled Model Intercomparison Project Phase 5) and assuming sufficient coral nutrition, our results suggest that P. astreoides and D. labyrinthiformis coral calcification rates in Bermuda could increase throughout the 21st century as a result of gradual warming predicted under a minimum CO2 emissions pathway [representative concentration pathway (RCP) 2.6] with positive 21st-century calcification rates potentially maintained under a reduced CO2 emissions pathway (RCP 4.5). These results highlight the potential benefits of rapid reductions in global anthropogenic CO2 emissions for 21st-century Bermuda coral reefs and the ecosystem services they provide.
PLOS ONE | 2017
Jiang-Shiou Hwang; Maria Debora Iglesias-Rodriguez; Bethan M. Jones; Sonia Blanco-Ameijeiras; Mervyn Greaves; María Huete-Ortega; Mario Lebrato
Upwelling is the process by which deep, cold, relatively high-CO2, nutrient-rich seawater rises to the sunlit surface of the ocean. This seasonal process has fueled geoengineering initiatives to fertilize the surface ocean with deep seawater to enhance productivity and thus promote the drawdown of CO2. Coccolithophores, which inhabit many upwelling regions naturally ‘fertilized’ by deep seawater, have been investigated in the laboratory in the context of ocean acidification to determine the extent to which nutrients and CO2 impact their physiology, but few data exist in the field except from mesocosms. Here, we used the Porcupine Abyssal Plain (north Atlantic Ocean) Observatory to retrieve seawater from depths with elevated CO2 and nutrients, mimicking geoengineering approaches. We tested the effects of abrupt natural deep seawater fertilization on the physiology and biogeochemistry of two strains of Emiliania huxleyi of known physiology. None of the strains tested underwent cell divisions when incubated in waters obtained from <1,000 m (pH = 7.99–8.08; CO2 = 373–485 p.p.m; 1.5–12 μM nitrate). However, growth was promoted in both strains when cells were incubated in seawater from ~1,000 m (pH = 7.9; CO2 ~560 p.p.m.; 14–17 μM nitrate) and ~4,800 m (pH = 7.9; CO2 ~600 p.p.m.; 21 μM nitrate). Emiliania huxleyi strain CCMP 88E showed no differences in growth rate or in cellular content or production rates of particulate organic (POC) and inorganic (PIC) carbon and cellular particulate organic nitrogen (PON) between treatments using water from 1,000 m and 4,800 m. However, despite the N:P ratio of seawater being comparable in water from ~1,000 and ~4,800 m, the PON production rates were three times lower in one incubation using water from ~1,000 m compared to values observed in water from ~4,800 m. Thus, the POC:PON ratios were threefold higher in cells that were incubated in ~1,000 m seawater. The heavily calcified strain NZEH exhibited lower growth rates and PIC production rates when incubated in water from ~4,800 m compared to ~1,000 m, while cellular PIC, POC and PON were higher in water from 4,800 m. Calcite Sr/Ca ratios increased with depth despite constant seawater Sr/Ca, indicating that upwelling changes coccolith geochemistry. Our study provides the first experimental and field trial of a geoengineering approach to test how deep seawater impacts coccolithophore physiological and biogeochemical properties. Given that coccolithophore growth was only stimulated using waters obtained from >1,000 m, artificial upwelling using shallower waters may not be a suitable approach for promoting carbon sequestration for some locations and assemblages, and should therefore be investigated on a site-by-site basis.
Ecological Monographs | 2010
Mario Lebrato; Debora Iglesias-Rodriguez; Richard A. Feely; Dana Greeley; Daniel O.B. Jones; Nadia Suarez-Bosche; Richard S. Lampitt; Joan Enric Cartes; Darryl R. H. Green; Belinda J. Alker
Limnology and Oceanography | 2009
Mario Lebrato; Daniel O.B. Jones
Ecology | 2011
Cathy H. Lucas; Kylie Anne Pitt; Jennifer E. Purcell; Mario Lebrato; Robert H. Condon
Limnology and Oceanography | 2013
Mario Lebrato; Pedro A. de Jesus Mendes; Deborah K. Steinberg; Joan Enric Cartes; Bethan M. Jones; Laura M. Birsa; Roberto Benavides; Andreas Oschlies