Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marion Kennedy is active.

Publication


Featured researches published by Marion Kennedy.


Nature | 2008

Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population.

Lei Yang; Mark H. Soonpaa; Eric D. Adler; Torsten K. Roepke; Steven Kattman; Marion Kennedy; Els Henckaerts; Kristina Bonham; Geoffrey W. Abbott; R. Michael Linden; Loren J. Field; Gordon Keller

The functional heart is comprised of distinct mesoderm-derived lineages including cardiomyocytes, endothelial cells and vascular smooth muscle cells. Studies in the mouse embryo and the mouse embryonic stem cell differentiation model have provided evidence indicating that these three lineages develop from a common Flk-1+ (kinase insert domain protein receptor, also known as Kdr) cardiovascular progenitor that represents one of the earliest stages in mesoderm specification to the cardiovascular lineages. To determine whether a comparable progenitor is present during human cardiogenesis, we analysed the development of the cardiovascular lineages in human embryonic stem cell differentiation cultures. Here we show that after induction with combinations of activin A, bone morphogenetic protein 4 (BMP4), basic fibroblast growth factor (bFGF, also known as FGF2), vascular endothelial growth factor (VEGF, also known as VEGFA) and dickkopf homolog 1 (DKK1) in serum-free media, human embryonic-stem-cell-derived embryoid bodies generate a KDRlow/C-KIT(CD117)neg population that displays cardiac, endothelial and vascular smooth muscle potential in vitro and, after transplantation, in vivo. When plated in monolayer cultures, these KDRlow/C-KITneg cells differentiate to generate populations consisting of greater than 50% contracting cardiomyocytes. Populations derived from the KDRlow/C-KITneg fraction give rise to colonies that contain all three lineages when plated in methylcellulose cultures. Results from limiting dilution studies and cell-mixing experiments support the interpretation that these colonies are clones, indicating that they develop from a cardiovascular colony-forming cell. Together, these findings identify a human cardiovascular progenitor that defines one of the earliest stages of human cardiac development.


Development | 2004

Development of definitive endoderm from embryonic stem cells in culture

Atsushi Kubo; Katsunori Shinozaki; John M. Shannon; Valerie Kouskoff; Marion Kennedy; Savio L. C. Woo; Hans Joerg Fehling; Gordon Keller

The cellular and molecular events regulating the induction and tissue-specific differentiation of endoderm are central to our understanding of the development and function of many organ systems. To define and characterize key components in this process, we have investigated the potential of embryonic stem (ES) cells to generate endoderm following their differentiation to embryoid bodies (EBs) in culture. We found that endoderm can be induced in EBs, either by limited exposure to serum or by culturing in the presence of activin A (activin) under serum-free conditions. By using an ES cell line with the green fluorescent protein (GFP) cDNA targeted to the brachyury locus, we demonstrate that endoderm develops from a brachyury+ population that also displays mesoderm potential. Transplantation of cells generated from activin-induced brachyury+ cells to the kidney capsule of recipient mice resulted in the development of endoderm-derived structures. These findings demonstrate that ES cells can generate endoderm in culture and, as such, establish this differentiation system as a unique murine model for studying the development and specification of this germ layer.


Development | 2003

Tracking mesoderm induction and its specification to the hemangioblast during embryonic stem cell differentiation

Hans Jörg Fehling; Georges Lacaud; Atsushi Kubo; Marion Kennedy; Scott M. Robertson; Gordon Keller; Valerie Kouskoff

The hematopoietic and endothelial lineages derive from mesoderm and are thought to develop through the maturation of a common progenitor, the hemangioblast. To investigate the developmental processes that regulate mesoderm induction and specification to the hemangioblast, we generated an embryonic stem cell line with the green fluorescent protein (GFP) targeted to the mesodermal gene, brachyury. After the in vitro differentiation of these embryonic stem cells to embryoid bodies, developing mesodermal progenitors could be separated from those with neuroectoderm potential based on GFP expression. Co-expression of GFP with the receptor tyrosine kinase Flk1 revealed the emergence of three distinct cell populations, GFP-Flk1-, GFP+Flk1- and GFP+Flk1+ cells, which represent a developmental progression ranging from pre-mesoderm to prehemangioblast mesoderm to the hemangioblast.


Nature Biotechnology | 2007

Identification and targeting of the ROSA26 locus in human embryonic stem cells.

Stefan Irion; Hervé Luche; Paul Gadue; Hans Joerg Fehling; Marion Kennedy; Gordon Keller

The derivation of human embryonic stem (hES) cells has opened new avenues for studies on human development and provided a potential source of cells for replacement therapy. To reveal the full potential of hES cells, it would be advantageous to be able to genetically alter them as is routinely done with mouse ES cells through homologous recombination. The mouse Rosa26 locus is particularly useful for genetic modification as it can be targeted with high efficiency and is expressed in most cell types tested. Here we report the identification of the human homolog of the mouse Rosa26 locus. We demonstrate targeting of a red-fluorescent protein (tdRFP) cDNA to this locus through homologous recombination and expression of this targeted reporter in multiple hES cell–derived lineages. Through recombinase-mediated cassette exchange, we show replacement of the tdRFP cDNA with other cDNAs, providing a cell line in which transgenes can be readily introduced into a broadly expressed locus.


Cell Reports | 2012

T Lymphocyte Potential Marks the Emergence of Definitive Hematopoietic Progenitors in Human Pluripotent Stem Cell Differentiation Cultures

Marion Kennedy; Geneve Awong; Christopher M. Sturgeon; Andrea Ditadi; Ross LaMotte-Mohs; Juan Carlos Zúñiga-Pflücker; Gordon Keller

The efficient generation of hematopoietic stem cells from human pluripotent stem cells is dependent on the appropriate specification of the definitive hematopoietic program during differentiation. In this study, we used T lymphocyte potential to track the onset of definitive hematopoiesis from human embryonic and induced pluripotent stem cells differentiated with specific morphogens in serum- and stromal-free cultures. We show that this program develops from a progenitor population with characteristics of hemogenic endothelium, including the expression of CD34, VE-cadherin, GATA2, LMO2, and RUNX1. Along with T cells, these progenitors display the capacity to generate myeloid and erythroid cells. Manipulation of Activin/Nodal signaling during early stages of differentiation revealed that development of the definitive hematopoietic progenitor population is not dependent on this pathway, distinguishing it from primitive hematopoiesis. Collectively, these findings demonstrate that it is possible to generate T lymphoid progenitors from pluripotent stem cells and that this lineage develops from a population whose emergence marks the onset of human definitive hematopoiesis.


Molecular Cell | 1998

The β-Globin LCR Is Not Necessary for an Open Chromatin Structure or Developmentally Regulated Transcription of the Native Mouse β-Globin Locus

Elliot M. Epner; Andreas Reik; Daniel M. Cimbora; Agnes Telling; M. A. Bender; Steve Fiering; Tariq Enver; David I. K. Martin; Marion Kennedy; Gordon Keller; Mark Groudine

The murine beta-globin locus control region (LCR) was deleted from its native chromosomal location. The approximately 25 kb deletion eliminates all sequences and structures homologous to those defined as the human LCR. In differentiated ES cells and erythroleukemia cells containing the LCR-deleted chromosome, DNasel sensitivity of the beta-globin domain is established and maintained, developmental regulation of the locus is intact, and beta-like globin RNA levels are reduced 5%-25% of normal. Thus, in the native murine beta-globin locus, the LCR is necessary for normal levels of transcription, but other elements are sufficient to establish the open chromatin structure, transcription, and developmental specificity of the locus. These findings suggest a contributory rather than dominant function for the LCR in its native location.


Nature Biotechnology | 2014

Wnt signaling controls the specification of definitive and primitive hematopoiesis from human pluripotent stem cells

Christopher M. Sturgeon; Andrea Ditadi; Geneve Awong; Marion Kennedy; Gordon Keller

Efforts to derive hematopoietic stem cells (HSCs) from human pluripotent stem cells (hPSCs) are complicated by the fact that embryonic hematopoiesis consists of two programs, primitive and definitive, that differ in developmental potential. As only definitive hematopoiesis generates HSCs, understanding how this program develops is essential for being able to produce this cell population in vitro. Here we show that both hematopoietic programs transition through hemogenic endothelial intermediates and develop from KDR+CD34−CD144− progenitors that are distinguished by CD235a expression. Generation of primitive progenitors (KDR+CD235a+) depends on stage-specific activin-nodal signaling and inhibition of the Wnt–β-catenin pathway, whereas specification of definitive progenitors (KDR+CD235a−) requires Wnt–β-catenin signaling during this same time frame. Together, these findings establish simple selective differentiation strategies for the generation of primitive or definitive hematopoietic progenitors by Wnt–β-catenin manipulation, and in doing so provide access to enriched populations for future studies on hPSC-derived hematopoietic development.


Blood | 2010

Directed differentiation of hematopoietic precursors and functional osteoclasts from human ES and iPS cells

Agamemnon E. Grigoriadis; Marion Kennedy; Aline Bozec; Fiona K Brunton; Gudrun Stenbeck; In-Hyun Park; Erwin F. Wagner; Gordon Keller

The directed differentiation of human pluripotent stem cells offers the unique opportunity to generate a broad spectrum of human cell types and tissues for transplantation, drug discovery, and studying disease mechanisms. Here, we report the stepwise generation of bone-resorbing osteoclasts from human embryonic and induced pluripotent stem cells. Generation of a primitive streak-like population in embryoid bodies, followed by specification to hematopoiesis and myelopoiesis by vascular endothelial growth factor and hematopoietic cytokines in serum-free media, yielded a precursor population enriched for cells expressing the monocyte-macrophage lineage markers CD14, CD18, CD11b, and CD115. When plated in monolayer culture in the presence of macrophage colony-stimulating factor and receptor activator of nuclear factor-kappaB ligand (RANKL), these precursors formed large, multinucleated osteoclasts that expressed tartrate-resistant acid phosphatase and were capable of resorption. No tartrate-resistant acid phosphatase-positive multinucleated cells or resorption pits were observed in the absence of RANKL. Molecular analyses confirmed the expression of the osteoclast marker genes NFATc1, cathepsin K, and calcitonin receptor in a RANKL-dependent manner, and confocal microscopy demonstrated the coexpression of the alphavbeta3 integrin, cathepsin K and F-actin rings characteristic of active osteoclasts. Generating hematopoietic and osteoclast populations from human embryonic and induced pluripotent stem cells will be invaluable for understanding embryonic bone development and postnatal bone disease.


Nature Cell Biology | 2015

Human definitive haemogenic endothelium and arterial vascular endothelium represent distinct lineages

Andrea Ditadi; Christopher M. Sturgeon; Joanna Tober; Geneve Awong; Marion Kennedy; Amanda D. Yzaguirre; Lisa Azzola; Elizabeth S. Ng; Edouard G. Stanley; Deborah L. French; Xin Cheng; Paul Gadue; Nancy A. Speck; Andrew G. Elefanty; Gordon Keller

The generation of haematopoietic stem cells (HSCs) from human pluripotent stem cells (hPSCs) will depend on the accurate recapitulation of embryonic haematopoiesis. In the early embryo, HSCs develop from the haemogenic endothelium (HE) and are specified in a Notch-dependent manner through a process named endothelial-to-haematopoietic transition (EHT). As HE is associated with arteries, it is assumed that it represents a subpopulation of arterial vascular endothelium (VE). Here we demonstrate at a clonal level that hPSC-derived HE and VE represent separate lineages. HE is restricted to the CD34+CD73−CD184− fraction of day 8 embryoid bodies and it undergoes a NOTCH-dependent EHT to generate RUNX1C+ cells with multilineage potential. Arterial and venous VE progenitors, in contrast, segregate to the CD34+CD73medCD184+ and CD34+CD73hiCD184− fractions, respectively. Together, these findings identify HE as distinct from VE and provide a platform for defining the signalling pathways that regulate their specification to functional HSCs.


Annals of the New York Academy of Sciences | 2006

Regulation of hemangioblast development.

Georges Lacaud; Scott M. Robertson; James Palis; Marion Kennedy; Gordon Keller

Abstract: The in vitro differentiation of embryonic stem (ES) cells provides a powerful approach for studying the earliest events involved in the commitment of the hematopoietic and endothelial lineages. Using this model system, we have identified a precursor with the potential to generate both primitive and definitive hematopoietic cells as well as cells with endothelial characteristics. The developmental potential of this precursor suggests that it represents the in vitro equivalent of the hemangioblast, a common stem cell for both lineages. ES cells deficient for the transcription factor scl/tal‐1 are unable to generate hemangioblasts, while those deficient for Runx1 generate reduced numbers of these precursors. These findings indicate that both genes play pivotal roles at the earliest stages of hematopoietic and endothelial development. In addition, they highlight the strength of this model system in studying the function of genes in embryonic development.

Collaboration


Dive into the Marion Kennedy's collaboration.

Top Co-Authors

Avatar

Gordon Keller

University Health Network

View shared research outputs
Top Co-Authors

Avatar

Gordon Keller

University Health Network

View shared research outputs
Top Co-Authors

Avatar

Andrea Ditadi

University Health Network

View shared research outputs
Top Co-Authors

Avatar

Geneve Awong

Sunnybrook Research Institute

View shared research outputs
Top Co-Authors

Avatar

James Palis

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar

Scott M. Robertson

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Christopher M. Sturgeon

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Georges Lacaud

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juan Carlos Zuniga-Pflucker

Robert Wood Johnson University Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge