Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marion Pereira is active.

Publication


Featured researches published by Marion Pereira.


Journal of Agricultural and Food Chemistry | 2012

Effect of processing on recovery and variability associated with immunochemical analytical methods for multiple allergens in a single matrix: dark chocolate.

Sefat E. Khuda; Andrew B. Slate; Marion Pereira; Fadwa Al-Taher; Lauren S. Jackson; Carmen Diaz-Amigo; Elmer C. Bigley; T. B. Whitaker; Kristina M. Williams

Among the major food allergies, peanut, egg, and milk are the most common. The immunochemical detection of food allergens depends on various factors, such as the food matrix and processing method, which can affect allergen conformation and extractability. This study aimed to (1) develop matrix-specific incurred reference materials for allergen testing, (2) determine whether multiple allergens in the same model food can be simultaneously detected, and (3) establish the effect of processing on reference material stability and allergen detection. Defatted peanut flour, whole egg powder, and spray-dried milk were added to cookie dough at seven incurred levels before baking. Allergens were measured using five commercial enzyme-linked immunosorbent assay (ELISA) kits. All kits showed decreased recovery of all allergens after baking. Analytical coefficients of variation for most kits increased with baking time, but decreased with incurred allergen level. Thus, food processing negatively affects the recovery and variability of peanut, egg, and milk detection in a sugar cookie matrix when using immunochemical methods.


Journal of Agricultural and Food Chemistry | 2015

Multi-allergen Quantitation and the Impact of Thermal Treatment in Industry-Processed Baked Goods by ELISA and Liquid Chromatography-Tandem Mass Spectrometry

Christine H. Parker; Sefat E. Khuda; Marion Pereira; Mark M. Ross; Tong-Jen Fu; Xuebin Fan; Yan Wu; Kristina M. Williams; Jonathan W. DeVries; Brian Pulvermacher; Binaifer Bedford; Xi Zhang; Lauren S. Jackson

Undeclared food allergens account for 30-40% of food recalls in the United States. Compliance with ingredient labeling regulations and the implementation of effective manufacturing allergen control plans require the use of reliable methods for allergen detection and quantitation in complex food products. The objectives of this work were to (1) produce industry-processed model foods incurred with egg, milk, and peanut allergens, (2) compare analytical method performance for allergen quantitation in thermally processed bakery products, and (3) determine the effects of thermal treatment on allergen detection. Control and allergen-incurred cereal bars and muffins were formulated in a pilot-scale industry processing facility. Quantitation of egg, milk, and peanut in incurred baked goods was compared at various processing stages using commercial enzyme-linked immunosorbent assay (ELISA) kits and a novel multi-allergen liquid chromatography (LC)-tandem mass spectrometry (MS/MS) multiple-reaction monitoring (MRM) method. Thermal processing was determined to negatively affect the recovery and quantitation of egg, milk, and peanut to different extents depending on the allergen, matrix, and analytical test method. The Morinaga ELISA and LC-MS/MS quantitative methods reported the highest recovery across all monitored allergens, whereas the ELISA Systems, Neogen BioKits, Neogen Veratox, and R-Biopharm ELISA Kits underperformed in the determination of allergen content of industry-processed bakery products.


Food Chemistry | 2015

Gluten detection in foods available in the United States – A market survey

Girdhari M. Sharma; Marion Pereira; Kristina M. Williams

Many gluten-free (GF) food choices are now available in supermarkets. However, the unintentional presence of gluten in these foods poses a serious health risk to wheat-allergic and celiac patients. Different GF labelled foods (275) and non-GF labelled foods, without wheat/rye/barley on the ingredient label (186), were analysed for gluten content by two different enzyme linked immunosorbent assay (ELISA) kits. Considering the gluten threshold of 20ppm, GF labelled foods had 98.9% GF labelling compliance with 1.1% (3 out of 275) of foods being mislabelled/misbranded. Among the non-GF labelled foods, 19.4% (36 out of 186) of foods had >20ppm of gluten, as measured by at least one ELISA kit, of which 19 foods had >100ppm of gluten. The presence of oats in non-GF labelled foods was strongly correlated with a positive ELISA result. Gluten was also found in a significant number of foods with gluten/wheat-related advisory warnings.


Journal of Agricultural and Food Chemistry | 2015

Immunological characterization of the gluten fractions and their hydrolysates from wheat, rye and barley.

Prasad Rallabhandi; Girdhari M. Sharma; Marion Pereira; Kristina M. Williams

Gluten proteins in wheat, rye and barley cause celiac disease, an autoimmune disorder of the small intestine, which affects approximately 1% of the world population. Gluten is comprised of prolamin and glutelin. Since avoidance of dietary gluten is the only option for celiac patients, a sensitive gluten detection and quantitation method is warranted. Most regulatory agencies have set a threshold of 20 ppm gluten in foods labeled gluten-free, based on the currently available ELISA methods. However, these methods may exhibit differences in gluten quantitation from different gluten-containing grains. In this study, prolamin and glutelin fractions were isolated from wheat, rye, barley, oats and corn. Intact and pepsin-trypsin (PT)-digested prolamin and glutelin fractions were used to assess their immunoreactivity and gluten recovery by three sandwich and two competitive ELISA kits. The Western blots revealed varied affinity of ELISA antibodies to gluten-containing grain proteins and no reactivity to oat and corn proteins. ELISA results showed considerable variation in gluten recoveries from both intact and PT-digested gluten fractions among different kits. Prolamin fractions showed higher gluten recovery compared to their respective glutelin fractions. Among prolamins, barley exhibited higher recovery compared to wheat and rye with most of the ELISA kits used. Hydrolysis resulted in reduced gluten recovery of most gluten fractions. These results suggest that the suitability of ELISA for accurate gluten quantitation is dependent upon various factors, such as grain source, antibody specificity, gluten proteins and the level of their hydrolysis in foods.


Journal of Agricultural and Food Chemistry | 2013

Effect of Simulated Gastric and Intestinal Digestion on Temporal Stability and Immunoreactivity of Peanut, Almond, and Pine Nut Protein Allergens

Ondulla T. Toomer; Andrew Do; Marion Pereira; Kristina M. Williams

Current models of digestibility utilize pepsin stability to assess the safety of allergenic versus nonallergenic food proteins. Dietary protein digestion in vivo, however, requires acid denaturation and protease cleavage by pepsin, trypsin, and/or chymotrypsin. The ability of this approach to identify food protein stability in the mammalian gut may be limited. We determined the temporal stability and immunoreactivity of almond, pine nut, and peanut allergenic proteins under simulated physiologic gastric and intestinal digestive conditions in vitro. Gel electrophoresis and immunoblot analyses were used to determine protein stability and immunoreactivity, respectively. Peanut, almond, and pine nut proteins were pepsin- and pancreatin-stable and immunoreactive for up to 1 h after initiation of digestion. Moreover, successive acid denaturation and pepsin and pancreatin cleavage were necessary to hydrolyze these allergenic proteins and reduce their IgG- and IgE-binding capacity, which suggests that digestibility models must be improved for more accurate safety assessment of food allergens.


Journal of Agricultural and Food Chemistry | 2013

Development of an incurred cornbread model for gluten detection by immunoassays.

Girdhari M. Sharma; Sefat E. Khuda; Marion Pereira; Andrew B. Slate; Lauren S. Jackson; Christopher Pardo; Kristina M. Williams; T. B. Whitaker

Gluten that is present in food as a result of cross-contact or misbranding can cause severe health concerns to wheat-allergic and celiac patients. Immunoassays, such as enzyme-linked immunosorbent assay (ELISA) and lateral flow device (LFD), are commonly used to detect gluten traces in foods. However, the performance of immunoassays can be affected by non-assay-related factors, such as food matrix and processing conditions. Gluten (0-500 ppm) and wheat flour (20-1000 ppm) incurred cornbread was prepared at different incurred levels and baking conditions (204.4 °C for 20, 27, and 34 min) to study the accuracy and precision of gluten measurement by seven immunoassay kits (three LFD and four ELISA kits). The stability and immunoreactivity of gluten proteins, as measured by western blot using three different antibodies, were not adversely affected by the baking conditions. However, the gluten recovery varied depending upon the ELISA kit and the gluten source used to make the incurred cornbread, affecting the accuracy of gluten quantification (BioKits, 9-77%; Morinaga, 91-137%; R-Biopharm, 61-108%; and Romer Labs, 113-190%). Gluten recovery was reduced with increased baking time for most ELISA kits analyzed. Both the sampling and analytical variance increased with an increase in the gluten incurred level. The predicted analytical coefficient of variation associated with all ELISA kits was below 12% for all incurred levels, indicative of good analytical precision.


Scientific Reports | 2015

Ecto-5′-Nucleotidase (CD73) Regulates Host Inflammatory Responses and Exacerbates Murine Salmonellosis

M. Samiul Alam; Jennifer Kuo; Peter B. Ernst; Victoria L. Derr-Castillo; Marion Pereira; Dennis W. Gaines; Matthew Costales; Elmer C. Bigley; Kristina M. Williams

Food-borne Salmonella spp., are a major cause of hospitalization and death. Adenosine, an important immune regulator of inflammation, limits tissue damage during infection. CD39 (nucleoside triphosphate dephosphorylase) combined with ecto-5′-nucleotidase (CD73) metabolizes ATP to adenosine. We studied the expressions of CD39 and CD73 in tissues, and T helper cells in mice after Salmonella infection and evaluated the role of CD73 in regulating immune responses and bacterial clearance in wild-type and CD73-deficient (CD73−/−) mice. Both CD39 and CD73 transcript levels declined in the infected wild-type mice. Compared to wild-type mice, tissues from infected CD73−/− mice had significantly higher expression of pro-inflammatory cytokines and reduced anti-inflammatory responses. CD73−/− mice were more resistant to infection and had a greater inflammatory responses and a significantly lower bacterial load in the liver compared to wild-type mice. Thus, CD73 expression attenuates inflammation during murine Salmonellosis and impairs immunity, leading to increased bacterial colonization and prolonged infection.


Journal of Microbiological Methods | 2008

Use of flow cytometry in an apoptosis assay to determine pH and temperature stability of shiga-like toxin 1

Uma S. Babu; Dennis M. Gaines; Yang Wu; Carmen D. Westphal; Marion Pereira; Richard B. Raybourne

Shiga toxins and Shiga-like toxins (Stx) are a relatively large group of cytotoxins produced by certain serotypes of Shigella and E. coli (STEC). These toxins are responsible for diarrhea, hemorrhagic colitis and may induce hemolytic uremic syndrome (HUS) with serious consequences in young children. The toxins are proteins made up of 5 small B subunits responsible for binding to an outer membrane ligand on host cells and surround the larger, biologically active A subunit. For Shiga-like toxin 1 (Stx1), the cellular receptor is the carbohydrate globotriose. Stx1was purified from STEC. We utilized induction of apoptosis in the human monocyte cell line THP-1, as a biological endpoint to test the stability of Stx1 activity added to fruit punch at different pH (2-9) and temperatures (4 and 20 degrees C). A flow cytometric method was used to test for early and late apoptotic events based on binding of R-phycoerytherin-labeled annexin V to exposed membrane phosphatidyl serine. Membrane permeability to 7-Amino-actinomycin corresponds with late apoptosis or necrosis. The combination of acid pH and higher storage temperature resulted in greatest degree of toxin inactivation. This approach provides a rapid and high throughput method to determine the functional activity of Stx1, and related toxins in a food matrix.


Food Chemistry | 2016

Effects of grain species and cultivar, thermal processing, and enzymatic hydrolysis on gluten quantitation

Autusa Pahlavan; Girdhari M. Sharma; Marion Pereira; Kristina M. Williams

Gluten from wheat, rye, and barley can trigger IgE-mediated allergy or Celiac disease in sensitive individuals. Gluten-free labeled foods are available as a safe alternative. Immunoassays such as the enzyme-linked immunosorbent assay (ELISA) are commonly used to quantify gluten in foods. However, various non-assay related factors can affect gluten quantitation. The effect of gluten-containing grain cultivars, thermal processing, and enzymatic hydrolysis on gluten quantitation by various ELISA kits was evaluated. The ELISA kits exhibited variations in gluten quantitation depending on the gluten-containing grain and their cultivars. Acceptable gluten recoveries were obtained in 200mg/kg wheat, rye, and barley-spiked corn flour thermally processed at various conditions. However, depending on the enzyme, gluten grain source, and ELISA kit used, measured gluten content was significantly reduced in corn flour spiked with 200mg/kg hydrolyzed wheat, rye, and barley flour. Thus, the gluten grain source and processing conditions should be considered for accurate gluten analysis.


Food Additives and Contaminants Part A-chemistry Analysis Control Exposure & Risk Assessment | 2016

Survey of undeclared egg allergen levels in the most frequently recalled food types (including products bearing precautionary labelling)

Sefat E. Khuda; Girdhari M. Sharma; Dennis W. Gaines; Andrew B. Do; Marion Pereira; Michael Chang; Martine Ferguson; Kristina M. Williams

ABSTRACT Since the number of recalls involving undeclared allergens is commonly associated with bakery and snack foods, we aimed to determine the frequency of egg allergens in a large number of these products using two commercial enzyme-linked immunosorbent assay (ELISA) methods. Samples were chosen that either had no egg identified on the product label or which had an egg precautionary statement. Among all samples, egg protein was detected in 5% of products using a Morinaga (MO) kit and 1% of products using a R-Biopharm (RB) kit. For bakery samples, egg protein was detected in 6% of 363 samples with no precautionary labelling (6% by MO and 1% by RB kit) and 12% of 80 samples which had precautionary labelling. For snack samples, egg protein was detected in 2% of 371 samples with no precautionary labelling (2% by MO and < 1% by RB kit) and 5% of 21 samples which had precautionary labelling. The disagreement rates between two methods were 5.2% for bakery products and 2.6% for snack products. The sample repeatability was at an acceptable level for bakery (< 12.5%) and snack foods (< 7.5%) for each method. The relative standard deviation between test kits was high (103.1%) for bakery foods. Four bakery products without precautionary labelling had a higher level of egg protein per serving compared with the eliciting dose (ED10 of 3.7 mg protein) for egg allergic patients. These results highlight the fact that detection methodology plays a vital role for accurate labelling control and mitigation of risk for egg allergic consumers. GRAPHICAL ABSTRACT

Collaboration


Dive into the Marion Pereira's collaboration.

Top Co-Authors

Avatar

Kristina M. Williams

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar

Girdhari M. Sharma

Center for Food Safety and Applied Nutrition

View shared research outputs
Top Co-Authors

Avatar

Dennis W. Gaines

Center for Food Safety and Applied Nutrition

View shared research outputs
Top Co-Authors

Avatar

Elmer C. Bigley

Center for Food Safety and Applied Nutrition

View shared research outputs
Top Co-Authors

Avatar

Sefat E. Khuda

Center for Food Safety and Applied Nutrition

View shared research outputs
Top Co-Authors

Avatar

Uma S. Babu

Center for Food Safety and Applied Nutrition

View shared research outputs
Top Co-Authors

Avatar

Kannan V. Balan

Center for Food Safety and Applied Nutrition

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew B. Do

Center for Food Safety and Applied Nutrition

View shared research outputs
Top Co-Authors

Avatar

Lauren S. Jackson

Food and Drug Administration

View shared research outputs
Researchain Logo
Decentralizing Knowledge