Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marion Silies is active.

Publication


Featured researches published by Marion Silies.


Nature | 2012

Layered reward signalling through octopamine and dopamine in Drosophila

Christopher J. Burke; Wolf Huetteroth; David Owald; Emmanuel Perisse; Michael J. Krashes; Gaurav Das; Daryl M. Gohl; Marion Silies; Sarah J. Certel; Scott Waddell

Dopamine is synonymous with reward and motivation in mammals. However, only recently has dopamine been linked to motivated behaviour and rewarding reinforcement in fruitflies. Instead, octopamine has historically been considered to be the signal for reward in insects. Here we show, using temporal control of neural function in Drosophila, that only short-term appetitive memory is reinforced by octopamine. Moreover, octopamine-dependent memory formation requires signalling through dopamine neurons. Part of the octopamine signal requires the α-adrenergic-like OAMB receptor in an identified subset of mushroom-body-targeted dopamine neurons. Octopamine triggers an increase in intracellular calcium in these dopamine neurons, and their direct activation can substitute for sugar to form appetitive memory, even in flies lacking octopamine. Analysis of the β-adrenergic-like OCTβ2R receptor reveals that octopamine-dependent reinforcement also requires an interaction with dopamine neurons that control appetitive motivation. These data indicate that sweet taste engages a distributed octopamine signal that reinforces memory through discrete subsets of mushroom-body-targeted dopamine neurons. In addition, they reconcile previous findings with octopamine and dopamine and suggest that reinforcement systems in flies are more similar to mammals than previously thought.


The Journal of Neuroscience | 2008

Organization and Function of the Blood–Brain Barrier in Drosophila

Tobias Stork; Daniel Engelen; Alice Krudewig; Marion Silies; Roland J. Bainton; Christian Klämbt

The function of a complex nervous system depends on an intricate interplay between neuronal and glial cell types. One of the many functions of glial cells is to provide an efficient insulation of the nervous system and thereby allowing a fine tuned homeostasis of ions and other small molecules. Here, we present a detailed cellular analysis of the glial cell complement constituting the blood–brain barrier in Drosophila. Using electron microscopic analysis and single cell-labeling experiments, we characterize different glial cell layers at the surface of the nervous system, the perineurial glial layer, the subperineurial glial layer, the wrapping glial cell layer, and a thick layer of extracellular matrix, the neural lamella. To test the functional roles of these sheaths we performed a series of dye penetration experiments in the nervous systems of wild-type and mutant embryos. Comparing the kinetics of uptake of different sized fluorescently labeled dyes in different mutants allowed to conclude that most of the barrier function is mediated by the septate junctions formed by the subperineurial cells, whereas the perineurial glial cell layer and the neural lamella contribute to barrier selectivity against much larger particles (i.e., the size of proteins). We further compare the requirements of different septate junction components for the integrity of the blood–brain barrier and provide evidence that two of the six Claudin-like proteins found in Drosophila are needed for normal blood–brain barrier function.


Nature Methods | 2011

A versatile in vivo system for directed dissection of gene expression patterns

Daryl M. Gohl; Marion Silies; Xiaojing J. Gao; Sheetal Bhalerao; Francisco J. Luongo; Chun Chieh Lin; Christopher J. Potter; Thomas R. Clandinin

Tissue-specific gene expression using the upstream activating sequence (UAS)–GAL4 binary system has facilitated genetic dissection of many biological processes in Drosophila melanogaster. Refining GAL4 expression patterns or independently manipulating multiple cell populations using additional binary systems are common experimental goals. To simplify these processes, we developed a convertible genetic platform, the integrase swappable in vivo targeting element (InSITE) system. This approach allows GAL4 to be replaced with any other sequence, placing different genetic effectors under the control of the same regulatory elements. Using InSITE, GAL4 can be replaced with LexA or QF, allowing an expression pattern to be repurposed. GAL4 can also be replaced with GAL80 or split-GAL4 hemi-drivers, allowing intersectional approaches to refine expression patterns. The exchanges occur through efficient in vivo manipulations, making it possible to generate many swaps in parallel. This system is modular, allowing future genetic tools to be easily incorporated into the existing framework.


Neuron | 2013

Modular Use of Peripheral Input Channels Tunes Motion-Detecting Circuitry

Marion Silies; Daryl M. Gohl; Yvette E. Fisher; Limor Freifeld; Damon A. Clark; Thomas R. Clandinin

In the visual system, peripheral processing circuits are often tuned to specific stimulus features. How this selectivity arises and how these circuits are organized to inform specific visual behaviors is incompletely understood. Using forward genetics and quantitative behavioral studies, we uncover an input channel to motion detecting circuitry in Drosophila. The second-order neuron L3 acts combinatorially with two previously known inputs, L1 and L2, to inform circuits specialized to detect moving light and dark edges. In vivo calcium imaging of L3, combined with neuronal silencing experiments, suggests a neural mechanism to achieve selectivity for moving dark edges. We further demonstrate that different innate behaviors, turning and forward movement, can be independently modulated by visual motion. These two behaviors make use of different combinations of input channels. Such modular use of input channels to achieve feature extraction and behavioral specialization likely represents a general principle in sensory systems.


The Journal of Neuroscience | 2007

Glial Cell Migration in the Eye Disc

Marion Silies; Yeliz Yuva; Daniel Engelen; Annukka Aho; Tobias Stork; Christian Klämbt

Any complex nervous system is made out of two major cell types, neurons and glial cells. A hallmark of glial cells is their pronounced ability to migrate. En route to their final destinations, glial cells are generally guided by neuronal signals. Here we show that in the developing visual system of Drosophila glial cell migration is largely controlled by glial–glial interactions and occurs independently of axonal contact. Differentiation into wrapping glia is initiated close to the morphogenetic furrow. Using single cell labeling experiments we identified six distinct glial cell types in the eye disc. The migratory glial population is separated from the wrapping glial cells by the so-called carpet cells, extraordinary large glial cells, each covering a surface area of ∼10,000 epithelial cells. Subsequent cell ablation experiments demonstrate that the carpet glia regulates glial migration in the eye disc epithelium and suggest a new model underlying glial migration and differentiation in the developing visual system.


Annual Review of Neuroscience | 2014

Motion-Detecting Circuits in Flies: Coming into View

Marion Silies; Daryl M. Gohl; Thomas R. Clandinin

Visual motion cues provide animals with critical information about their environment and guide a diverse array of behaviors. The neural circuits that carry out motion estimation provide a well-constrained model system for studying the logic of neural computation. Through a confluence of behavioral, physiological, and anatomical experiments, taking advantage of the powerful genetic tools available in the fruit fly Drosophila melanogaster, an outline of the neural pathways that compute visual motion has emerged. Here we describe these pathways, the evidence supporting them, and the challenges that remain in understanding the circuits and computations that link sensory inputs to behavior. Studies in flies and vertebrates have revealed a number of functional similarities between motion-processing pathways in different animals, despite profound differences in circuit anatomy and structure. The fact that different circuit mechanisms are used to achieve convergent computational outcomes sheds light on the evolution of the nervous system.


Nature Neuroscience | 2010

APC/CFzr/Cdh1-dependent regulation of cell adhesion controls glial migration in the Drosophila PNS

Marion Silies; Christian Klämbt

Interactions between neurons and glia are a key feature during the assembly of the nervous system. During development, glial cells often follow extending axons, implying that axonal outgrowth and glial migration are precisely coordinated. We found that the anaphase-promoting complex/cyclosome (APC/C) co-activator fizzy-related/Cdh1 (Fzr/Cdh1) is involved in the non-autonomous control of peripheral glial migration in postmitotic Drosophila neurons. APC/CFzr/Cdh1 is a cell-cycle regulator that targets proteins that are required for G1 arrest for ubiquitination and subsequent degradation. We found that Fzr/Cdh1 function is mediated by the immunoglobulin superfamily cell adhesion molecule Fasciclin2 (Fas2). In motor neurons Fzr/Cdh1 is crucial for the establishment of a graded axonal distribution of Fas2. Axonal Fas2 interacts homophilically with a glial isoform of Fas2. Glial migration is initiated along axonal segments that have low levels of Fas2 but stalls in axonal domains with high levels of Fas2 on their surfaces. This represents a simple mechanism by which a subcellular gradient of adhesiveness can coordinate glial migration with axonal growth.


Neuron | 2015

Orientation Selectivity Sharpens Motion Detection in Drosophila.

Yvette E. Fisher; Marion Silies; Thomas R. Clandinin

Detecting the orientation and movement of edges in a scene is critical to visually guided behaviors of many animals. What are the circuit algorithms that allow the brain to extract such behaviorally vital visual cues? Using in vivo two-photon calcium imaging in Drosophila, we describe direction selective signals in the dendrites of T4 and T5 neurons, detectors of local motion. We demonstrate that this circuit performs selective amplification of local light inputs, an observation that constrains motion detection models and confirms a core prediction of the Hassenstein-Reichardt correlator (HRC). These neurons are also orientation selective, responding strongly to static features that are orthogonal to their preferred axis of motion, a tuning property not predicted by the HRC. This coincident extraction of orientation and direction sharpens directional tuning through surround inhibition and reveals a striking parallel between visual processing in flies and vertebrate cortex, suggesting a universal strategy for motion processing.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Motor neurons controlling fluid ingestion in Drosophila.

Andrea Manzo; Marion Silies; Daryl M. Gohl; Kristin Scott

Rhythmic motor behaviors such as feeding are driven by neural networks that can be modulated by external stimuli and internal states. In Drosophila, ingestion is accomplished by a pump that draws fluid into the esophagus. Here we examine how pumping is regulated and characterize motor neurons innervating the pump. Frequency of pumping is not affected by sucrose concentration or hunger but is altered by fluid viscosity. Inactivating motor neurons disrupts pumping and ingestion, whereas activating them elicits arrhythmic pumping. These motor neurons respond to taste stimuli and show prolonged activity to palatable substances. This work describes an important component of the neural circuit for feeding in Drosophila and is a step toward understanding the rhythmic activity producing ingestion.


Development | 2009

Drosophila Neurexin IV stabilizes neuron-glia interactions at the CNS midline by binding to Wrapper.

Tobias Stork; Silke Thomas; Floriano Rodrigues; Marion Silies; Elke Naffin; Stephanie Wenderdel; Christian Klämbt

Ensheathment of axons by glial membranes is a key feature of complex nervous systems ensuring the separation of single axons or axonal fascicles. Nevertheless, the molecules that mediate the recognition and specific adhesion of glial and axonal membranes are largely unknown. We use the Drosophila midline of the embryonic central nervous system as a model to investigate these neuron glia interactions. During development, the midline glial cells acquire close contact to commissural axons and eventually extend processes into the commissures to wrap individual axon fascicles. Here, we show that this wrapping of axons depends on the interaction of the neuronal transmembrane protein Neurexin IV with the glial Ig-domain protein Wrapper. Although Neurexin IV has been previously described to be an essential component of epithelial septate junctions (SJ), we show that its function in mediating glial wrapping at the CNS midline is independent of SJ formation. Moreover, differential splicing generates two different Neurexin IV isoforms. One mRNA is enriched in septate junction-forming tissues, whereas the other mRNA is expressed by neurons and recruited to the midline by Wrapper. Although both Neurexin IV isoforms are able to bind Wrapper, the neuronal isoform has a higher affinity for Wrapper. We conclude that Neurexin IV can mediate different adhesive cell-cell contacts depending on the isoforms expressed and the context of its interaction partners.

Collaboration


Dive into the Marion Silies's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher J. Potter

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaojing J. Gao

Howard Hughes Medical Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge