Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marisa St. Claire is active.

Publication


Featured researches published by Marisa St. Claire.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Monoclonal antibody-mediated enhancement of dengue virus infection in vitro and in vivo and strategies for prevention

Ana P. Goncalvez; Ronald E. Engle; Marisa St. Claire; Robert H. Purcell; Ching-Juh Lai

Infection with dengue virus (DENV) or any other flavivirus induces cross-reactive, but weakly neutralizing or nonneutralizing, antibodies that recognize epitopes involving the fusion peptide in the envelope glycoprotein. Humanized mAb IgG 1A5, derived from a chimpanzee, shares properties of cross-reactive antibodies. mAb IgG 1A5 up-regulated DENV infection by a mechanism of antibody-dependent enhancement (ADE) in a variety of Fc receptor-bearing cells in vitro. A 10- to 1,000-fold increase of viral yield in K562 cells, dependent on the DENV serotype, was observed over a range of subneutralizing concentrations of IgG 1A5. A significant increase of DENV-4 viremia titers (up to 100-fold) was also demonstrated in juvenile rhesus monkeys immunized with passively transferred dilutions of IgG 1A5. These results, together with earlier findings of ADE of DENV-2 infection by a polyclonal serum, establish the primate model for analysis of ADE. Considering the abundance of these cross-reactive antibodies, our observations confirm that significant viral amplification could occur during DENV infections in humans with prior infection or with maternally transferred immunity, possibly leading to severe dengue. Strategies to eliminate ADE were explored by altering the antibody Fc structures responsible for binding to Fc receptors. IgG 1A5 variants, containing amino acid substitutions from the Fc region of IgG2 or IgG4 antibodies, reduced but did not eliminate DENV-4-enhancing activity in K562 cells. Importantly, a 9-aa deletion at the N terminus of the CH2 domain in the Fc region abrogated the enhancing activity.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Mutations that permit efficient replication of hepatitis C virus RNA in Huh-7 cells prevent productive replication in chimpanzees

Jens Bukh; Thomas Pietschmann; Volker Lohmann; Nicole Krieger; Kristina Faulk; Ronald E. Engle; Sugantha Govindarajan; Max Shapiro; Marisa St. Claire; Ralf Bartenschlager

The development of a subgenomic replicon derived from the hepatitis C virus (HCV) strain Con1 enabled the study of viral RNA replication in Huh-7 cells. The level of replication of replicons, as well as full-length Con1 genomes, increased significantly by a combination of two adaptive mutations in NS3 (E1202G and T1280I) and a single mutation in NS5A (S2197P). However, these cell culture-adaptive mutations influenced in vivo infectivity. After intrahepatic transfection of chimpanzees, the wild-type Con1 genome was infectious and produced viral titers similar to those produced by other infectious HCV clones. Repeated independent transfections with RNA transcripts of a Con1 genome containing the three adaptive mutations failed to achieve active HCV infection. Furthermore, although a chimpanzee transfected with RNA transcripts of a Con1 genome with only the NS5A mutation became infected, this mutation was detected only in virus genomes recovered from serum at day 4; viruses recovered at day 7 had a reversion back to the original Con1 sequence. Our study demonstrates that mutations that are adaptive for replication of HCV in cell culture may be highly attenuating in vivo.


Proceedings of the National Academy of Sciences of the United States of America | 2003

The p7 polypeptide of hepatitis C virus is critical for infectivity and contains functionally important genotype-specific sequences

Akito Sakai; Marisa St. Claire; Kristina Faulk; Sugantha Govindarajan; Suzanne U. Emerson; Robert H. Purcell; Jens Bukh

The role of the hepatitis C virus (HCV) p7 protein in the virus life cycle is not known. Previous in vitro data indicated that this 63-aa polypeptide is located in the endoplasmic reticulum and has two transmembrane domains (TMDs) connected by a cytoplasmic loop; the amino- and carboxyl-terminal tails are oriented toward the endoplasmic reticulum lumen. Furthermore, recent in vitro studies suggested that HCV p7 could function as a virus-encoded ion channel. It might therefore be a relevant target for future drug development. We studied the role of HCV p7 in vivo. Because HCV does not replicate efficiently in cell culture, we mutagenized p7 of an infectious genotype 1a cDNA clone and tested RNA transcripts of each mutant for infectivity in chimpanzees by intrahepatic transfection. Appropriate processing of mutant polypeptides was confirmed by studies in transfected mammalian cells. Mutants with deletions of all or part of p7 and a mutant with substitutions of two conserved residues in the cytoplasmic loop were not viable. Thus, p7 is essential for infectivity of HCV. A chimera in which the p7 of the 1a clone was replaced with p7 from an infectious genotype 2a clone also was not viable. This finding suggests a genotype-specific interaction between p7 and other genomic regions. To define which portions of p7 played the most significant role for this interaction, we tested three chimeras with the 1a backbone in which only specific domains of p7 had the 2a sequence. A p7 chimera with 2a tails and TMDs and the 1a cytoplasmic loop was not viable. A mutant with 2a tails and cytoplasmic loop and 1a TMDs also was not viable. However, a p7 chimera with 2a TMDs and cytoplasmic loop and 1a tails was viable. The transfected chimpanzee became viremic at week 2, and recovered viruses had the chimeric sequence. These data indicate that the amino- and/or carboxyl-terminal intraluminal tails of p7 contain sequences with genotype-specific function.


The Lancet | 2004

Mucosal immunisation of African green monkeys (Cercopithecus aethiops) with an attenuated parainfluenza virus expressing the SARS coronavirus spike protein for the prevention of SARS.

Alexander Bukreyev; Elaine W. Lamirande; Ursula J. Buchholz; Leatrice Vogel; William R. Elkins; Marisa St. Claire; Brian R. Murphy; Kanta Subbarao; Peter L. Collins

Summary Background The outbreak of severe acute respiratory syndrome (SARS) in 2002 was caused by a previously unknown coronavirus—SARS coronavirus (SARS-CoV). We have developed an experimental SARS vaccine for direct immunisation of the respiratory tract, the major site of SARS-coronavirus transmission and disease. Methods We expressed the complete SARS coronavirus envelope spike (S) protein from a recombinant attenuated parainfluenza virus (BHPIV3) that is being developed as a live attenuated, intranasal paediatric vaccine against human parainfluenza virus type 3 (HPIV3). We immunised eight African green monkeys, four with a single dose of BHPIV3/SARS-S and four with a control, BHPIV3/Ctrl, administered via the respiratory tract. A SARS-coronavirus challenge was given to all monkeys 28 days after immunisation. Findings Immunisation of animals with BHPIV3/SARS-S induced the production of SARS-coronavirus-neutralising serum antibodies, indicating that a systemic immune response resulted from mucosal immunisation. After challenge with SARS coronavirus, all monkeys in the control group shed SARS coronavirus, with shedding lasting 5–8 days. No viral shedding occurred in the group immunised with BHPIV3/SARS-S. Interpretation A vectored mucosal vaccine expressing the SARS-coronavirus S protein alone may be highly effective in a single-dose format for the prevention of SARS.


Journal of Virology | 2000

Recombinant respiratory syncytial virus that does not express the NS1 or M2-2 protein is highly attenuated and immunogenic in chimpanzees.

Michael N. Teng; Stephen S. Whitehead; Alison Bermingham; Marisa St. Claire; William R. Elkins; Brian R. Murphy; Peter L. Collins

ABSTRACT Mutant recombinant respiratory syncytial viruses (RSV) which cannot express the NS1 and M2-2 proteins, designated rA2ΔNS1 and rA2ΔM2-2, respectively, were evaluated as live-attenuated RSV vaccines. The rA2ΔNS1 virus contains a large deletion that should have the advantageous property of genetic stability during replication in vitro and in vivo. In vitro, rA2ΔNS1 replicated approximately 10-fold less well than wild-type recombinant RSV (rA2), while rA2ΔM2-2 had delayed growth kinetics but reached a final titer similar to that of rA2. Each virus was administered to the respiratory tracts of RSV-seronegative chimpanzees to assess replication, immunogenicity, and protective efficacy. The rA2ΔNS1 and rA2ΔM2-2 viruses were 2,200- to 55,000-fold restricted in replication in the upper and lower respiratory tracts but induced a level of RSV-neutralizing antibody in serum that was only slightly reduced compared to the level induced by wild-type RSV. The replication of wild-type RSV in immunized chimpanzees after challenge was reduced more than 10,000-fold at each site. Importantly, rA2ΔNS1 and rA2ΔM2-2 were 10-fold more restricted in replication in the upper respiratory tract than was thecpts248/404 virus, a vaccine candidate that retained mild reactogenicity in the upper respiratory tracts of 1-month-old infants. Thus, either rA2ΔNS1 or rA2ΔM2-2 might be appropriately attenuated for this age group, which is the major target population for an RSV vaccine. In addition, these results show that neither NS1 nor M2-2 is essential for RSV replication in vivo, although each is important for efficient replication.


Journal of Virology | 2004

The two major human metapneumovirus genetic lineages are highly related antigenically, and the fusion (F) protein is a major contributor to this antigenic relatedness.

Mario H. Skiadopoulos; Stéphane Biacchesi; Ursula J. Buchholz; Jeffrey M. Riggs; Sonja R. Surman; Emerito Amaro-Carambot; Josephine M. McAuliffe; William R. Elkins; Marisa St. Claire; Peter L. Collins; Brian R. Murphy

ABSTRACT The growth properties and antigenic relatedness of the CAN98-75 (CAN75) and the CAN97-83 (CAN83) human metapneumovirus (HMPV) strains, which represent the two distinct HMPV genetic lineages and exhibit 5 and 63% amino acid divergence in the fusion (F) and attachment (G) proteins, respectively, were investigated in vitro and in rodents and nonhuman primates. Both strains replicated to high titers (≥6.0 log10) in the upper respiratory tract of hamsters and to moderate titers (≥3.6 log10) in the lower respiratory tract. The two lineages exhibited 48% antigenic relatedness based on reciprocal cross-neutralization assay with postinfection hamster sera, and infection with each strain provided a high level of resistance to reinfection with the homologous or heterologous strain. Hamsters immunized with a recombinant human parainfluenza virus type 1 expressing the fusion F protein of the CAN83 strain developed a serum antibody response that efficiently neutralized virus from both lineages and were protected from challenge with either HMPV strain. This result indicates that the HMPV F protein is a major antigenic determinant that mediates extensive cross-lineage neutralization and protection. Both HMPV strains replicated to low titers in the upper and lower respiratory tracts of rhesus macaques but induced high levels of HMPV-neutralizing antibodies in serum effective against both lineages. The level of HMPV replication in chimpanzees was moderately higher, and infected animals developed mild colds. HMPV replicated the most efficiently in the respiratory tracts of African green monkeys, and the infected animals developed a high level of HMPV serum-neutralizing antibodies (1:500 to 1:1,000) effective against both lineages. Reciprocal cross-neutralization assays in which postinfection sera from all three primate species were used indicated that CAN75 and CAN83 are 64 to 99% related antigenically. HMPV-infected chimpanzees and African green monkeys were highly protected from challenge with the heterologous HMPV strain. Taken together, the results from hamsters and nonhuman primates support the conclusion that the two HMPV genetic lineages are highly related antigenically and are not distinct antigenic subtypes or subgroups as defined by reciprocal cross-neutralization in vitro.


Virology | 2004

Replication of SARS coronavirus administered into the respiratory tract of African Green, rhesus and cynomolgus monkeys

Josephine M. McAuliffe; Leatrice Vogel; Anjeanette Roberts; Gary A. Fahle; Steven H. Fischer; Wun-Ju Shieh; Emily Butler; Sherif R. Zaki; Marisa St. Claire; Brian R. Murphy; Kanta Subbarao

Abstract SARS coronavirus (SARS-CoV) administered intranasally and intratracheally to rhesus, cynomolgus and African Green monkeys (AGM) replicated in the respiratory tract but did not induce illness. The titer of serum neutralizing antibodies correlated with the level of virus replication in the respiratory tract (AGM>cynomolgus>rhesus). Moderate to high titers of SARS-CoV with associated interstitial pneumonitis were detected in the lungs of AGMs on day 2 and were resolving by day 4 post-infection. Following challenge of AGMs 2 months later, virus replication was highly restricted and there was no evidence of enhanced disease. These species will be useful for the evaluation of the immunogenicity of candidate vaccines, but the lack of apparent clinical illness in all three species, variability from animal to animal in level of viral replication, and rapid clearance of virus and pneumonitis in AGMs must be taken into account by investigators considering the use of these species in efficacy and challenge studies.


Journal of Virology | 2005

The Open Reading Frame 3 Gene of Hepatitis E Virus Contains a cis-Reactive Element and Encodes a Protein Required for Infection of Macaques

Judith Graff; Hanh Nguyen; Claro Yu; William R. Elkins; Marisa St. Claire; Robert H. Purcell; Suzanne U. Emerson

ABSTRACT An infectious cDNA clone of hepatitis E virus was mutated in order to prevent synthesis of either open reading frame 2 (ORF2) protein or ORF3 protein. HuH-7 cells transfected with an ORF2-null mutant produced ORF3, and those transfected with an ORF3-null mutant produced ORF2. Silent mutations introduced into a highly conserved nucleotide sequence in the ORF3 coding region eliminated the synthesis of both ORF2 and ORF3 proteins, suggesting that it comprised a cis-reactive element. A mutant that was not able to produce ORF3 protein did not produce a detectable infection in rhesus macaques. However, a mutant that encoded an ORF3 protein lacking a phosphorylation site reported to be critical for function was able to replicate its genome in cell culture and to induce viremia and seroconversion in rhesus monkeys, suggesting that phosphorylation of ORF3 protein was not necessary for genome replication or for production of infectious virions.


Journal of Virology | 2005

Recombinant Newcastle Disease Virus Expressing a Foreign Viral Antigen Is Attenuated and Highly Immunogenic in Primates

Alexander Bukreyev; Zhuhui Huang; Lijuan Yang; Subbiah Elankumaran; Marisa St. Claire; Brian R. Murphy; Siba K. Samal; Peter L. Collins

ABSTRACT Paramyxoviruses such as human parainfluenza viruses that bear inserts encoding protective antigens of heterologous viruses can induce an effective immunity against the heterologous viruses in experimental animals. However, vectors based on common human pathogens would be expected to be restricted in replication in the adult human population due to high seroprevalence, an effect that would reduce vector immunogenicity. To address this issue, we evaluated Newcastle disease virus (NDV), an avian paramyxovirus that is serotypically distinct from common human pathogens, as a vaccine vector. Two strains were evaluated: the attenuated vaccine strain LaSota (NDV-LS) that replicates mostly in the chicken respiratory tract and the Beaudette C (NDV-BC) strain of intermediate virulence that produces mild systemic infection in chickens. A recombinant version of each virus was modified by the insertion, between the P and M genes, of a gene cassette encoding the human parainfluenza virus type 3 (HPIV3) hemagglutinin-neuraminidase (HN) protein, a test antigen with considerable historic data. The recombinant viruses were administered to African green monkeys (NDV-BC and NDV-LS) and rhesus monkeys (NDV-BC only) by combined intranasal and intratracheal routes at a dose of 106.5 PFU per site, with a second equivalent dose administered 28 days later. Little or no virus shedding was detected in nose-throat swabs or tracheal lavages following immunization with either strain. In a separate experiment, direct examination of lung tissue confirmed a highly attenuated, restricted pattern of replication by parental NDV-BC. The serum antibody response to the foreign HN protein induced by the first immunization with either NDV vector was somewhat less than that observed following a wild-type HPIV3 infection; however, the titer following the second dose exceeded that observed with HPIV3 infection, even though HPIV3 replicates much more efficiently than NDV in these animals. NDV appears to be a promising vector for the development of vaccines for humans; one application would be in controlling localized outbreaks of emerging pathogens.


Journal of Virology | 2002

Mucosal Immunization of Rhesus Monkeys against Respiratory Syncytial Virus Subgroups A and B and Human Parainfluenza Virus Type 3 by Using a Live cDNA-Derived Vaccine Based on a Host Range-Attenuated Bovine Parainfluenza Virus Type 3 Vector Backbone

Alexander C. Schmidt; Daniel R. Wenzke; Josephine M. McAuliffe; Marisa St. Claire; William R. Elkins; Brian R. Murphy; Peter L. Collins

ABSTRACT Reverse genetics was used to develop a two-component, trivalent live attenuated vaccine against human parainfluenza virus type 3 (HPIV3) and respiratory syncytial virus (RSV) subgroups A and B. The backbone for each of the two components of this vaccine was the attenuated recombinant bovine/human PIV3 (rB/HPIV3), a recombinant BPIV3 in which the bovine HN and F protective antigens are replaced by their HPIV3 counterparts (48). This chimera retains the well-characterized host range attenuation phenotype of BPIV3, which appears to be appropriate for immunization of young infants. The open reading frames (ORFs) for the G and F major protective antigens of RSV subgroup A and B were each placed under the control of PIV3 transcription signals and inserted individually or in homologous pairs as supernumerary genes in the promoter proximal position of rB/HPIV3. The level of replication of rB/HPIV3-RSV chimeric viruses in the respiratory tract of rhesus monkeys was similar to that of their parent virus rB/HPIV3, and each of the chimeras induced a robust immune response to both RSV and HPIV3. RSV-neutralizing antibody titers induced by rB/HPIV3-RSV chimeric viruses were equivalent to those induced by infection with wild-type RSV, and HPIV3-specific antibody responses were similar to, or slightly less than, after infection with the rB/HPIV3 vector itself. This study describes a novel vaccine strategy against RSV in which vaccine viruses with a common attenuated backbone, specifically rB/HPIV3 derivatives expressing the G and/or F major protective antigens of RSV subgroup A and of RSV subgroup B, are used to immunize by the intranasal route against RSV and HPIV3, which are the first and second most important viral agents of pediatric respiratory tract disease worldwide.

Collaboration


Dive into the Marisa St. Claire's collaboration.

Top Co-Authors

Avatar

Brian R. Murphy

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Robert H. Purcell

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Suzanne U. Emerson

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Peter L. Collins

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Peter B. Jahrling

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

William R. Elkins

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Reed F. Johnson

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jens Bukh

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Joseph E. Blaney

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Russell Byrum

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge