Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marjaana Rantala is active.

Publication


Featured researches published by Marjaana Rantala.


Philosophical Transactions of the Royal Society B | 2012

Regulation of the photosynthetic apparatus under fluctuating growth light

Mikko Tikkanen; Michele Grieco; Markus Nurmi; Marjaana Rantala; Marjaana Suorsa; Eva-Mari Aro

Safe and efficient conversion of solar energy to metabolic energy by plants is based on tightly inter-regulated transfer of excitation energy, electrons and protons in the photosynthetic machinery according to the availability of light energy, as well as the needs and restrictions of metabolism itself. Plants have mechanisms to enhance the capture of energy when light is limited for growth and development. Also, when energy is in excess, the photosynthetic machinery slows down the electron transfer reactions in order to prevent the production of reactive oxygen species and the consequent damage of the photosynthetic machinery. In this opinion paper, we present a partially hypothetical scheme describing how the photosynthetic machinery controls the flow of energy and electrons in order to enable the maintenance of photosynthetic activity in nature under continual fluctuations in white light intensity. We discuss the roles of light-harvesting II protein phosphorylation, thermal dissipation of excess energy and the control of electron transfer by cytochrome b6f, and the role of dynamically regulated turnover of photosystem II in the maintenance of the photosynthetic machinery. We present a new hypothesis suggesting that most of the regulation in the thylakoid membrane occurs in order to prevent oxidative damage of photosystem I.


Plant Physiology | 2015

Plants Actively Avoid State Transitions upon Changes in Light Intensity: Role of Light-Harvesting Complex II Protein Dephosphorylation in High Light

Nageswara Rao Mekala; Marjaana Suorsa; Marjaana Rantala; Eva-Mari Aro; Mikko Tikkanen

Phosphorylation state changes with light intensity maintain the excitation balance between photosystems by suppressing state transitions. Photosystem II (PSII) core and light-harvesting complex II (LHCII) proteins in plant chloroplasts undergo reversible phosphorylation upon changes in light intensity (being under control of redox-regulated STN7 and STN8 kinases and TAP38/PPH1 and PSII core phosphatases). Shift of plants from growth light to high light results in an increase of PSII core phosphorylation, whereas LHCII phosphorylation concomitantly decreases. Exactly the opposite takes place when plants are shifted to lower light intensity. Despite distinct changes occurring in thylakoid protein phosphorylation upon light intensity changes, the excitation balance between PSII and photosystem I remains unchanged. This differs drastically from the canonical-state transition model induced by artificial states 1 and 2 lights that concomitantly either dephosphorylate or phosphorylate, respectively, both the PSII core and LHCII phosphoproteins. Analysis of the kinase and phosphatase mutants revealed that TAP38/PPH1 phosphatase is crucial in preventing state transition upon increase in light intensity. Indeed, tap38/pph1 mutant revealed strong concomitant phosphorylation of both the PSII core and LHCII proteins upon transfer to high light, thus resembling the wild type under state 2 light. Coordinated function of thylakoid protein kinases and phosphatases is shown to secure balanced excitation energy for both photosystems by preventing state transitions upon changes in light intensity. Moreover, PROTON GRADIENT REGULATION5 (PGR5) is required for proper regulation of thylakoid protein kinases and phosphatases, and the pgr5 mutant mimics phenotypes of tap38/pph1. This shows that there is a close cooperation between the redox- and proton gradient-dependent regulatory mechanisms for proper function of the photosynthetic machinery.


Plant Journal | 2015

Light acclimation involves dynamic re-organization of the pigment-protein megacomplexes in non-appressed thylakoid domains.

Marjaana Suorsa; Marjaana Rantala; Fikret Mamedov; Maija Lespinasse; Andrea Trotta; Michele Grieco; Eerika Vuorio; Mikko Tikkanen; Sari Järvi; Eva-Mari Aro

Thylakoid energy metabolism is crucial for plant growth, development and acclimation. Non-appressed thylakoids harbor several high molecular mass pigment-protein megacomplexes that have flexible compositions depending upon the environmental cues. This composition is important for dynamic energy balancing in photosystems (PS) I and II. We analysed the megacomplexes of Arabidopsis wild type (WT) plants and of several thylakoid regulatory mutants. The stn7 mutant, which is defective in phosphorylation of the light-harvesting complex (LHC) II, possessed a megacomplex composition that was strikingly different from that of the WT. Of the nine megacomplexes in total for the non-appressed thylakoids, the largest megacomplex in particular was less abundant in the stn7 mutant under standard growth conditions. This megacomplex contains both PSI and PSII and was recently shown to allow energy spillover between PSII and PSI (Nat. Commun., 6, 2015, 6675). The dynamics of the megacomplex composition was addressed by exposing plants to different light conditions prior to thylakoid isolation. The megacomplex pattern in the WT was highly dynamic. Under darkness or far red light it showed low levels of LHCII phosphorylation and resembled the stn7 pattern; under low light, which triggers LHCII phosphorylation, it resembled that of the tap38/pph1 phosphatase mutant. In contrast, solubilization of the entire thylakoid network with dodecyl maltoside, which efficiently solubilizes pigment-protein complexes from all thylakoid compartments, revealed that the pigment-protein composition remained stable despite the changing light conditions or mutations that affected LHCII (de)phosphorylation. We conclude that the composition of pigment-protein megacomplexes specifically in non-appressed thylakoids undergoes redox-dependent changes, thus facilitating maintenance of the excitation balance between the two photosystems upon changes in light conditions.


Biochimica et Biophysica Acta | 2014

Dark-adapted spinach thylakoid protein heterogeneity offers insights into the photosystem II repair cycle

Marjaana Suorsa; Marjaana Rantala; Ravi Danielsson; Sari Järvi; Virpi Paakkarinen; Wolfgang P. Schröder; Stenbjörn Styring; Fikret Mamedov; Eva-Mari Aro

In higher plants, thylakoid membrane protein complexes show lateral heterogeneity in their distribution: photosystem (PS) II complexes are mostly located in grana stacks, whereas PSI and adenosine triphosphate (ATP) synthase are mostly found in the stroma-exposed thylakoids. However, recent research has revealed strong dynamics in distribution of photosystems and their light harvesting antenna along the thylakoid membrane. Here, the dark-adapted spinach (Spinacia oleracea L.) thylakoid network was mechanically fragmented and the composition of distinct PSII-related proteins in various thylakoid subdomains was analyzed in order to get more insights into the composition and localization of various PSII subcomplexes and auxiliary proteins during the PSII repair cycle. Most of the PSII subunits followed rather equal distribution with roughly 70% of the proteins located collectively in the grana thylakoids and grana margins; however, the low molecular mass subunits PsbW and PsbX as well as the PsbS proteins were found to be more exclusively located in grana thylakoids. The auxiliary proteins assisting in repair cycle of PSII were mostly located in stroma-exposed thylakoids, with the exception of THYLAKOID LUMEN PROTEIN OF 18.3 (TLP18.3), which was more evenly distributed between the grana and stroma thylakoids. The TL29 protein was present exclusively in grana thylakoids. Intriguingly, PROTON GRADIENT REGULATION5 (PGR5) was found to be distributed quite evenly between grana and stroma thylakoids, whereas PGR5-LIKE PHOTOSYNTHETIC PHENOTYPE1 (PGRL1) was highly enriched in the stroma thylakoids and practically missing from the grana cores. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy.


Plant Journal | 2016

Serine and threonine residues of plant STN7 kinase are differentially phosphorylated upon changing light conditions and specifically influence the activity and stability of the kinase

Andrea Trotta; Marjaana Suorsa; Marjaana Rantala; Björn Lundin; Eva-Mari Aro

STN7 kinase catalyzes the phosphorylation of the globally most common membrane proteins, the light-harvesting complex II (LHCII) in plant chloroplasts. STN7 itself possesses one serine (Ser) and two threonine (Thr) phosphosites. We show that phosphorylation of the Thr residues protects STN7 against degradation in darkness, low light and red light, whereas increasing light intensity and far red illumination decrease phosphorylation and induce STN7 degradation. Ser phosphorylation, in turn, occurs under red and low intensity white light, coinciding with the client protein (LHCII) phosphorylation. Through analysis of the counteracting LHCII phosphatase mutant tap38/pph1, we show that Ser phosphorylation and activation of the STN7 kinase for subsequent LHCII phosphorylation are heavily affected by pre-illumination conditions. Transitions between the three activity states of the STN7 kinase (deactivated in darkness and far red light, activated in low and red light, inhibited in high light) are shown to modulate the phosphorylation of the STN7 Ser and Thr residues independently of each other. Such dynamic regulation of STN7 kinase phosphorylation is crucial for plant growth and environmental acclimation.


Plant Physiology | 2016

The Low Molecular Weight Protein PsaI Stabilizes the Light-Harvesting Complex II Docking Site of Photosystem I

Magdalena Plöchinger; Salar Torabi; Marjaana Rantala; Mikko Tikkanen; Marjaana Suorsa; Poul-Erik Jensen; Eva-Mari Aro; Jörg Meurer

Loss of plant PsaI Photosystem I subunit destabilizes the binding of PsaL and PsaH subunits of this photosystem and causes nonphotochemical dark-reduction of the plastoquinone pool keeping plants in state 2 in the dark. PsaI represents one of three low molecular weight peptides of PSI. Targeted inactivation of the plastid PsaI gene in Nicotiana tabacum has no measurable effect on photosynthetic electron transport around PSI or on accumulation of proteins involved in photosynthesis. Instead, the lack of PsaI destabilizes the association of PsaL and PsaH to PSI, both forming the light-harvesting complex (LHC)II docking site of PSI. These alterations at the LHCII binding site surprisingly did not prevent state transition but led to an increased incidence of PSI-LHCII complexes, coinciding with an elevated phosphorylation level of the LHCII under normal growth light conditions. Remarkably, LHCII was rapidly phosphorylated in ΔpsaI in darkness even after illumination with far-red light. We found that this dark phosphorylation also occurs in previously described mutants impaired in PSI function or state transition. A prompt shift of the plastoquinone (PQ) pool into a more reduced redox state in the dark caused an enhanced LHCII phosphorylation in ΔpsaI. Since the redox status of the PQ pool is functionally connected to a series of physiological, biochemical, and gene expression reactions, we propose that the shift of mutant plants into state 2 in darkness represents a compensatory and/or protective metabolic mechanism. This involves an increased reduction and/or reduced oxidation of the PQ pool, presumably to sustain a balanced excitation of both photosystems upon the onset of light.


FEBS Letters | 2016

Downregulation of TAP38/PPH1 enables LHCII hyperphosphorylation in Arabidopsis mutant lacking LHCII docking site in PSI

Marjaana Rantala; Nina Lehtimäki; Eva-Mari Aro; Marjaana Suorsa

Redox‐regulated reversible phosphorylation of the light‐harvesting complex II (LHCII) controls the excitation energy distribution between photosystem (PS) II and PSI. The PsaL and PsaH subunits of PSI enable the association of pLHCII to PSI. Here, we show that the failure of the psal mutant to dock pLHCII to PSI induces excessive phosphorylation of LHCII, primarily due to a marked downregulation of the TAP38/PPH1 phosphatase occurring at post‐transcriptional level. TAP38/PPH1 is shown to be associated with megacomplex that contains both photosystems in a light‐ and LHCII‐PSII core‐phosphorylation‐dependent manner. It is suggested that proper megacomplex‐related association of TAP38/PPH1 protects it against degradation.


Journal of Visualized Experiments | 2018

Analysis of Thylakoid Membrane Protein Complexes by Blue Native Gel Electrophoresis

Marjaana Rantala; Virpi Paakkarinen; Eva-Mari Aro

Photosynthetic electron transfer chain (ETC) converts solar energy to chemical energy in the form of NADPH and ATP. Four large protein complexes embedded in the thylakoid membrane harvest solar energy to drive electrons from water to NADP+ via two photosystems, and use the created proton gradient for production of ATP. Photosystem PSII, PSI, cytochrome b6f (Cyt b6f) and ATPase are all multiprotein complexes with distinct orientation and dynamics in the thylakoid membrane. Valuable information about the composition and interactions of the protein complexes in the thylakoid membrane can be obtained by solubilizing the complexes from the membrane integrity by mild detergents followed by native gel electrophoretic separation of the complexes. Blue native polyacrylamide gel electrophoresis (BN-PAGE) is an analytical method used for the separation of protein complexes in their native and functional form. The method can be used for protein complex purification for more detailed structural analysis, but it also provides a tool to dissect the dynamic interactions between the protein complexes. The method was developed for the analysis of mitochondrial respiratory protein complexes, but has since been optimized and improved for the dissection of the thylakoid protein complexes. Here, we provide a detailed up-to-date protocol for analysis of labile photosynthetic protein complexes and their interactions in Arabidopsis thaliana.


Plant Journal | 2017

Proteomic characterization of hierarchical megacomplex formation in Arabidopsis thylakoid membrane

Marjaana Rantala; Mikko Tikkanen; Eva-Mari Aro


BIO-PROTOCOL | 2018

Separation of Thylakoid Protein Complexes with Two-dimensional Native-PAGE

Marjaana Rantala; Virpi Paakkarinen; Eva-Mari Aro

Collaboration


Dive into the Marjaana Rantala's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge