Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Virpi Paakkarinen is active.

Publication


Featured researches published by Virpi Paakkarinen.


Journal of Biological Chemistry | 1999

Co-translational Assembly of the D1 Protein into Photosystem II

Lixin Zhang; Virpi Paakkarinen; Klaas J. van Wijk; Eva-Mari Aro

Assembly of multi-subunit membrane protein complexes is poorly understood. In this study, we present direct evidence that the D1 protein, a multiple membrane spanning protein, assembles co-translationally into the large membrane-bound complex, photosystem II. During pulse-chase studies in intact chloroplasts, incorporation of the D1 protein occurred without transient accumulation of free labeled protein in the thylakoid membrane, and photosystem II subcomplexes contained nascent D1 intermediates of 17, 22, and 25 kDa. These N-terminal D1 intermediates could be co-immunoprecipitated with antiserum directed against the D2 protein, suggesting co-translational assembly of the D1 protein into PS II complexes. Further evidence for a co-translational assembly of the D1 protein into photosystem II was obtained by analyzing ribosome nascent chain complexes liberated from the thylakoid membrane after a short pulse labeling. Radiolabeled D1 intermediates could be immunoprecipitated under nondenaturing conditions with antisera raised against the D1 and D2 protein as well as CP47. However, when the ribosome pellets were solubilized with SDS, the interaction of these intermediates with CP47 was completely lost, but strong interaction of a 25-kDa D1 intermediate with the D2 protein still remained. Taken together, our results indicate that during the repair of photosystem II, the assembly of the newly synthesized D1 protein into photosystem II occurs co-translationally involving direct interaction of the nascent D1 chains with the D2 protein.


Plant Physiology | 2004

Towards Functional Proteomics of Membrane Protein Complexes in Synechocystis sp. PCC 6803

Mirkka Herranen; Natalia Battchikova; Pengpeng Zhang; Alexander Graf; Sari Sirpiö; Virpi Paakkarinen; Eva-Mari Aro

The composition and dynamics of membrane protein complexes were studied in the cyanobacterium Synechocystis sp. PCC 6803 by two-dimensional blue native/SDS-PAGE followed by matrix-assisted laser-desorption ionization time of flight mass spectrometry. Approximately 20 distinct membrane protein complexes could be resolved from photoautotrophically grown wild-type cells. Besides the protein complexes involved in linear photosynthetic electron flow and ATP synthesis (photosystem [PS] I, PSII, cytochrome b6f, and ATP synthase), four distinct complexes containing type I NAD(P)H dehydrogenase (NDH-1) subunits were identified, as well as several novel, still uncharacterized protein complexes. The dynamics of the protein complexes was studied by culturing the wild type and several mutant strains under various growth modes (photoautotrophic, mixotrophic, or photoheterotrophic) or in the presence of different concentrations of CO2, iron, or salt. The most distinct modulation observed in PSs occurred in iron-depleted conditions, which induced an accumulation of CP43′ protein associated with PSI trimers. The NDH-1 complexes, on the other hand, responded readily to changes in the CO2 concentration and the growth mode of the cells and represented an extremely dynamic group of membrane protein complexes. Our results give the first direct evidence, to our knowledge, that the NdhF3, NdhD3, and CupA proteins assemble together to form a small low CO2-induced protein complex and further demonstrate the presence of a fourth subunit, Sll1735, in this complex. The two bigger NDH-1 complexes contained a different set of NDH-1 polypeptides and are likely to function in respiratory and cyclic electron transfer. Pulse labeling experiments demonstrated the requirement of PSII activity for de novo synthesis of the NDH-1 complexes.


The Plant Cell | 2000

Biogenesis of the chloroplast-encoded D1 protein: regulation of translation elongation, insertion, and assembly into photosystem II.

Lixin Zhang; Virpi Paakkarinen; Klaas J. van Wijk; Eva-Mari Aro

Regulation of translation elongation, membrane insertion, and assembly of the chloroplast-encoded D1 protein of photosystem II (PSII) was studied using a chloroplast translation system in organello. Translation elongation of D1 protein was found to be regulated by (1) a redox component that can be activated not only by photosynthetic electron transfer but also by reduction with DTT; (2) the trans-thylakoid proton gradient, which is absolutely required for elongation of D1 nascent chains on the thylakoid membrane; and (3) the thiol reactants N-ethylmaleimide (NEM) and iodosobenzoic acid (IBZ), which inhibit translation elongation with concomitant accumulation of distinct D1 pausing intermediates. These results demonstrate that D1 translation elongation and membrane insertion are tightly coupled and highly regulated processes in that proper insertion is a prerequisite for translation elongation of D1. Cotranslational and post-translational assembly steps of D1 into PSII reaction center and core complexes occurred independently of photosynthetic electron transfer or trans-thylakoid proton gradient but were strongly affected by the thiol reactants DTT, NEM, and IBZ. These compounds reduced the stability of the early PSII assembly intermediates, hampered the C-terminal processing of the precursor of D1, and prevented the post-translational reassociation of CP43, indicating a strong dependence of the D1 assembly steps on proper redox conditions and the formation of disulfide bonds.


Biochemical Journal | 2011

Optimized native gel systems for separation of thylakoid protein complexes: novel super- and mega-complexes

Sari Järvi; Marjaana Suorsa; Virpi Paakkarinen; Eva-Mari Aro

Gel-based analysis of thylakoid membrane protein complexes represents a valuable tool to monitor the dynamics of the photosynthetic machinery. Native-PAGE preserves the components and often also the conformation of the protein complexes, thus enabling the analysis of their subunit composition. Nevertheless, the literature and practical experimentation in the field sometimes raise confusion owing to a great variety of native-PAGE and thylakoid-solubilization systems. In the present paper, we describe optimized methods for separation of higher plant thylakoid membrane protein complexes by native-PAGE addressing particularly: (i) the use of detergent; (ii) the use of solubilization buffer; and (iii) the gel electrophoresis method. Special attention is paid to separation of high-molecular-mass thylakoid membrane super- and mega-complexes from Arabidopsis thaliana leaves. Several novel super- and mega-complexes including PS (photosystem) I, PSII and LHCs (light-harvesting complexes) in various combinations are reported.


FEBS Journal | 2008

Light regulation of CaS, a novel phosphoprotein in the thylakoid membrane of Arabidopsis thaliana

Julia P. Vainonen; Yumiko Sakuragi; Simon Stael; Mikko Tikkanen; Yagut Allahverdiyeva; Virpi Paakkarinen; Eveliina Aro; Marjaana Suorsa; Henrik Vibe Scheller; Alexander V. Vener; Eva-Mari Aro

Exposure of Arabidopsis thaliana plants to high levels of light revealed specific phosphorylation of a 40 kDa protein in photosynthetic thylakoid membranes. The protein was identified by MS as extracellular calcium‐sensing receptor (CaS), previously reported to be located in the plasma membrane. By confocal laser scanning microscopy and subcellular fractionation, it was demonstrated that CaS localizes to the chloroplasts and is enriched in stroma thylakoids. The phosphorylation level of CaS responded strongly to light intensity. The light‐dependent thylakoid protein kinase STN8 is required for CaS phosphorylation. The phosphorylation site was mapped to the stroma‐exposed Thr380, located in a motif for interaction with 14‐3‐3 proteins and proteins with forkhead‐associated domains, which suggests the involvement of CaS in stress responses and signaling pathways. The knockout Arabidopsis lines revealed a significant role for CaS in plant growth and development.


Plant Physiology | 2012

Steady-State Phosphorylation of Light-Harvesting Complex II Proteins Preserves Photosystem I under Fluctuating White Light

Michele Grieco; Mikko Tikkanen; Virpi Paakkarinen; Saijaliisa Kangasjärvi; Eva-Mari Aro

According to the “state transitions” theory, the light-harvesting complex II (LHCII) phosphorylation in plant chloroplasts is essential to adjust the relative absorption cross section of photosystem II (PSII) and PSI upon changes in light quality. The role of LHCII phosphorylation upon changes in light intensity is less thoroughly investigated, particularly when changes in light intensity are too fast to allow the phosphorylation/dephosphorylation processes to occur. Here, we demonstrate that the Arabidopsis (Arabidopsis thaliana) stn7 (for state transition7) mutant, devoid of the STN7 kinase and LHCII phosphorylation, shows a growth penalty only under fluctuating white light due to a low amount of PSI. Under constant growth light conditions, stn7 acquires chloroplast redox homeostasis by increasing the relative amount of PSI centers. Thus, in plant chloroplasts, the steady-state LHCII phosphorylation plays a major role in preserving PSI upon rapid fluctuations in white light intensity. Such protection of PSI results from LHCII phosphorylation-dependent equal distribution of excitation energy to both PSII and PSI from the shared LHCII antenna and occurs in cooperation with nonphotochemical quenching and the proton gradient regulation5-dependent control of electron flow, which are likewise strictly regulated by white light intensity. LHCII phosphorylation is concluded to function both as a stabilizer (in time scales of seconds to minutes) and a dynamic regulator (in time scales from tens of minutes to hours and days) of redox homeostasis in chloroplasts, subject to modifications by both environmental and metabolic cues. Exceeding the capacity of LHCII phosphorylation/dephosphorylation to balance the distribution of excitation energy between PSII and PSI results in readjustment of photosystem stoichiometry.


Journal of Biological Chemistry | 2006

Dimeric and monomeric organization of photosystem II - Distribution of five distinct complexes in the different domains of the thylakoid membrane

Ravi Danielsson; Marjaana Suorsa; Virpi Paakkarinen; Per-Åke Albertsson; Stenbjörn Styring; Eva-Mari Aro; Fikret Mamedov

The supramolecular organization of photosystem II (PSII) was characterized in distinct domains of the thylakoid membrane, the grana core, the grana margins, the stroma lamellae, and the so-called Y100 fraction. PSII supercomplexes, PSII core dimers, PSII core monomers, PSII core monomers lacking the CP43 subunit, and PSII reaction centers were resolved and quantified by blue native PAGE, SDS-PAGE for the second dimension, and immunoanalysis of the D1 protein. Dimeric PSII (PSII supercomplexes and PSII core dimers) dominate in the core part of the thylakoid granum, whereas the monomeric PSII prevails in the stroma lamellae. Considerable amounts of PSII monomers lacking the CP43 protein and PSII reaction centers (D1-D2-cytochrome b559 complex) were found in the stroma lamellae. Our quantitative picture of the supramolecular composition of PSII, which is totally different between different domains of the thylakoid membrane, is discussed with respect to the function of PSII in each fraction. Steady state electron transfer, flash-induced fluorescence decay, and EPR analysis revealed that nearly all of the dimeric forms represent oxygen-evolving PSII centers. PSII core monomers were heterogeneous, and a large fraction did not evolve oxygen. PSII monomers without the CP43 protein and PSII reaction centers showed no oxygen-evolving activity.


Plant Physiology | 2003

Requirement of phosphatidylglycerol for maintenance of photosynthetic machinery.

Isamu Sakurai; Miki Hagio; Zoltán Gombos; Taina Tyystjärvi; Virpi Paakkarinen; Eva-Mari Aro; Hajime Wada

Phosphatidylglycerol (PG) is a ubiquitous component of thylakoid membranes. Experiments with the pgsA mutant of the cyanobacterium Synechocystis sp. PCC6803 defective in biosynthesis of PG have demonstrated an indispensable role of PG in photosynthesis. In the present study, we have investigated the light susceptibility of the pgsA mutant with regard to the maintenance of the photosynthetic machinery. Growth of the mutant cells without PG increased the light susceptibility of the cells and resulted in severe photoinhibition of photosynthesis upon a high-light treatment, whereas the growth in the presence of PG was protected against photoinhibition. Photoinhibition induced by PG deprivation was mainly caused by an impairment of the restoration process. The primary target of the light-induced damage in thylakoid membranes, the D1 protein of photosystem (PS) II was, however, synthesized and degraded with similar rates irrespective of whether the mutant cells were incubated with PG or not. Intriguingly, it was found that instead of the synthesis of the D1 protein, the dimerization of the PSII core monomers was impaired in the PG-deprived mutant cells. Addition of PG to photoinhibited cells restored the dimerization capacity of PSII core monomers. These results suggest that PG plays an important role in the maintenance of the photosynthetic machinery through the dimerization and reactivation of the PSII core complex.


Biochemical Journal | 2007

TLP18.3, a novel thylakoid lumen protein regulating photosystem II repair cycle

Sari Sirpiö; Yagut Allahverdiyeva; Marjaana Suorsa; Virpi Paakkarinen; Julia P. Vainonen; Natalia Battchikova; Eva-Mari Aro

A proteome analysis of Arabidopsis thaliana thylakoid-associated polysome nascent chain complexes was performed to find novel proteins involved in the biogenesis, maintenance and turnover of thylakoid protein complexes, in particular the PSII (photosystem II) complex, which exhibits a high turnover rate. Four unknown proteins were identified, of which TLP18.3 (thylakoid lumen protein of 18.3 kDa) was selected for further analysis. The Arabidopsis mutants (SALK_109618 and GABI-Kat 459D12) lacking the TLP18.3 protein showed higher susceptibility of PSII to photoinhibition. The increased susceptibility of DeltaTLP18.3 plants to high light probably originates from an inefficient reassembly of PSII monomers into dimers in the grana stacks, as well as from an impaired turnover of the D1 protein in stroma exposed thylakoids. Such dual function of the TLP18.3 protein is in accordance with its even distribution between the grana and stroma thylakoids. Notably, the lack of the TLP18.3 protein does not lead to a severe collapse of the PSII complexes, suggesting a redundancy of proteins assisting these particular repair steps to assure functional PSII. The DeltaTLP18.3 plants showed no clear visual phenotype under standard growth conditions, but when challenged by fluctuating light during growth, the retarded growth of DeltaTLP18.3 plants was evident.


Molecular Plant-microbe Interactions | 2003

Depletion of the Photosystem II Core Complex in Mature Tobacco Leaves Infected by the Flavum Strain of Tobacco mosaic virus

Kirsi Lehto; Mikko Tikkanen; Jean-Baptiste Hiriart; Virpi Paakkarinen; Eva-Mari Aro

The flavum strain of Tobacco mosaic virus (TMV) differs from the wild-type (wt) virus by causing strong yellow and green mosaic in the systemically infected developing leaves, yellowing in the fully expanded leaves, and distinct malformations of chloroplasts in both types of infected tissues. Analysis of the thylakoid proteins of flavum strain-infected tobacco leaves indicated that the chlorosis in mature leaves was accompanied by depletion of the entire photosystem II (PSII) core complexes and the 33-kDa protein of the oxygen evolving complex. The only change observed in the thylakoid proteins of the corresponding wt TMV-infected leaves was a slight reduction of the alpha and beta subunits of the ATP synthase complex. The coat proteins of different yellowing strains of TMV are known to effectively accumulate inside chloroplasts, but in this work, the viral movement protein also was detected in association with the thylakoid membranes of flavum strain-infected leaves. The mRNAs of different enzymes involved in the chlorophyll biosynthesis pathway were not reduced in the mature chlorotic leaves. These results suggest that the chlorosis was not caused by reduction of pigment biosynthesis, but rather, by reduction of specific proteins of the PSII core complexes and by consequent break-down of the pigments.

Collaboration


Dive into the Virpi Paakkarinen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge