Marjana R Sarker
University of North Texas Health Science Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marjana R Sarker.
Behavioural Brain Research | 2013
Marjana R Sarker; Susan Franks; James L. Caffrey
The neurobiological mechanisms modulating stress may share common pathways with appetite regulation and consequent obesity. The orexigenic hormone, ghrelin may moderate anxiety and stress-related eating behavior. This study was designed to investigate humoral (ghrelin, cortisol) and psychological/behavioral characteristics (subjective hunger, anxiety, and stress; eating behavior; coping ability) among obese subjects in a fasting state and after eating a standard meal. Subjects included 18 obese but otherwise healthy adult women. Subjects were divided into two groups based on the relative direction of ghrelin response to a standard meal. A meal mediated suppression in serum ghrelin (post/pre<.94) was defined as a normal ghrelin response (NG) (n=9) and failure to suppress (post/pre>1.0) was designated as faulty ghrelin response (FG) (n=9). Ghrelin and cortisol responses were correlated, r(18)=0.558, p=.016. FG subjects had lower ratings of coping ability [t(2,16)=2.437, p=.027 and higher ratings of hunger cues in the expected direction [t(2,16)=-2.061, p=.056] compared to NG subjects. Meal mediated declines in subjective hunger were observed for both NG [t(1,8)=4.141, p=.003] and FG [t(1,8)=2.718, p=.026]. NG also showed declines in subjective anxiety [t(1,8)=2.977, p=.018], subjective stress [t(1,8)=2.321, p=.049], and cortisol [t(1,8)=4.214, p=.003]. In conclusion, changes in ghrelin, cortisol and selected psychological and behavioral indices are closely associated with one another suggesting that ghrelin may influence stress related eating and thus, the consequent observed relationship among stress, mood and obesity.
PLOS ONE | 2015
Marjana R Sarker; Susan Franks; Nathalie Sumien; Nopporn Thangthaeng; Frank Filipetto; Michael J. Forster
Dietary curcumin was studied for its potential to decrease adiposity and reverse obesity- associated cognitive impairment in a mouse model of midlife sedentary obesity. We hypothesized that curcumin intake, by decreasing adiposity, would improve cognitive function in a manner comparable to caloric restriction (CR), a weight loss regimen. 15-month-old male C57BL/6 mice were assigned in groups to receive the following dietary regimens for 12 weeks: (i) a base diet (Ain93M) fed ad libitum (AL), (ii) the base diet restricted to 70% of ad libitum (CR) or (iii) the base diet containing curcumin fed AL (1000 mg/kg diet, CURAL). Blood markers of inflammation, interleukin 6 (IL-6) and C-reactive protein (CRP), as well as an indicator of redox stress (GSH: GSSG ratio), were determined at different time points during the treatments, and visceral and subcutaneous adipose tissue were measured upon completion of the experiment. After 8 weeks of dietary treatment, the mice were tested for spatial cognition (Morris water maze) and cognitive flexibility (discriminated active avoidance). The CR group showed significant weight loss and reduced adiposity, whereas CURAL mice had stable weight throughout the experiment, consumed more food than the AL group, with no reduction of adiposity. However, both CR and CURAL groups took fewer trials than AL to reach criterion during the reversal sessions of the active avoidance task, suggesting an improvement in cognitive flexibility. The AL mice had higher levels of CRP compared to CURAL and CR, and GSH as well as the GSH: GSSG ratio were increased during curcumin intake, suggesting a reducing shift in the redox state. The results suggest that, independent of their effects on adiposity; dietary curcumin and caloric restriction have positive effects on frontal cortical functions that could be linked to anti-inflammatory or antioxidant actions.
Nanomedicine: Nanotechnology, Biology and Medicine | 2017
Andrew Gdowski; Amalendu Ranjan; Marjana R Sarker; Jamboor K. Vishwanatha
Aim: The aim of this study was to develop a novel cabazitaxel bone targeted nanoparticle (NP) system for improved drug delivery to the bone microenvironment. Materials & methods: Nanoparticles were developed using poly(D,L-lactic-co-glycolic acid) and cabazitaxel as the core with amino-bisphosphonate surface conjugation. Optimization of nanoparticle physiochemical properties, in vitro evaluation in prostate cancer cell lines and in vivo testing in an intraosseous model of metastatic prostate cancer was performed. Results: This bone targeted cabazitaxel nanocarrier system showed significant reduction in tumor burden, while at the same time maintaining bone structure integrity and reducing pain in the mouse tumor limb. Conclusion: This bone microenvironment targeted nanoparticle system and clinically relevant approach of evaluation represents a promising advancement for treating bone metastatic cancer.
GeroScience | 2018
Marjana R Sarker; Susan Franks
Processes such as aberrant redox signaling and chronic low-grade systemic inflammation have been reported to modulate age-associated pathologies such as cognitive impairment. Curcumin, the primary therapeutic component of the Indian spice, Turmeric (Curcuma longa), has long been known for its strong anti-inflammatory and antioxidant activity attributable to its unique molecular structure. Recently, an interest in this polyphenol as a cognitive therapeutic for the elderly has emerged. The purpose of this paper is to critically review preclinical and clinical studies that have evaluated the efficacy of curcumin in ameliorating and preventing age-associated cognitive decline and address the translational progress of preclinical to clinical efficacy. PubMed, semantic scholar, and Google scholar searches were used for preclinical studies; and clinicaltrials.gov, the Australian and New Zealand clinical trials registry, and PubMed search were used to select relevant completed clinical studies. Results from preclinical studies consistently demonstrate curcumin and its analogues to be efficacious for various aspects of cognitive impairment and processes that contribute to age-associated cognitive impairment. Results of published clinical studies, while mixed, continue to show promise for curcumin’s use as a therapeutic for cognitive decline but overall remain inconclusive at this time. Both in vitro and in vivo studies have found that curcumin can significantly decrease oxidative stress, systemic inflammation, and obstruct pathways that activate transcription factors that augment these processes. Future clinical studies would benefit from including evaluation of peripheral and cerebrospinal fluid biomarkers of dementia and behavioral markers of cognitive decline, as well as targeting the appropriate population.
Archive | 2017
Katherine Pumphrey; Michael J. Forster; Marjana R Sarker
The Journal of Urology | 2016
Andrew Gdowski; Amalendu Ranjan; Anindita Mukerjee; Marjana R Sarker; Joe Kimbell; Jamboor K. Vishwanatha
Archive | 2016
Reema M Palankar; Susan Franks; Marjana R Sarker
Archive | 2016
Marjana R Sarker; Susan Franks; Nathalie Sumien; Michael J. Forster
Archive | 2016
Gillian R Breuer Do; Susan Franks; Marjana R Sarker
The FASEB Journal | 2015
Marjana R Sarker; Susan Franks; Nathalie Sumien; Michael J. Forster