Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark A. Currie is active.

Publication


Featured researches published by Mark A. Currie.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Heterochromatin protein Sir3 induces contacts between the amino terminus of histone H4 and nucleosomal DNA

Feng Wang; Geng Li; Mohammed Altaf; Chenning Lu; Mark A. Currie; Aaron J. Johnson; Danesh Moazed

The regulated binding of effector proteins to the nucleosome plays a central role in the activation and silencing of eukaryotic genes. How this binding changes the properties of chromatin to mediate gene activation or silencing is not fully understood. Here we provide evidence that association of the budding yeast silent information regulator 3 (Sir3) silencing protein with the nucleosome induces a conformational change in the amino terminus of histone H4 that promotes interactions between the conserved H4 arginines 17 and 19 (R17 and R19) and nucleosomal DNA. Substitutions of H4R17 and R19 with alanine abolish silencing in vivo, but have little or no effect on binding of Sir3 to nucleosomes or histone H4 peptides in vitro. Furthermore, in both the previously reported crystal structure of the Sir3-bromo adjacent homology (BAH) domain bound to the Xenopus laevis nucleosome core particle and the crystal structure of the Sir3-BAH domain bound to the yeast nucleosome core particle described here, H4R17 and R19 make contacts with nucleosomal DNA rather than with Sir3. These results suggest that Sir3 binding generates a more stable nucleosome by clamping H4R17 and R19 to nucleosomal DNA, and raise the possibility that such induced changes in histone–DNA contacts play major roles in the regulation of chromatin structure.


Journal of Molecular Biology | 2010

Insights into Higher-Order Organization of the Cellulosome Revealed by a Dissect-and-Build Approach: Crystal Structure of Interacting Clostridium thermocellum Multimodular Components

Jarrett J. Adams; Mark A. Currie; Sabrina Ali; Edward A. Bayer; Zongchao Jia; Steven P. Smith

Cellulosomes are large, multienzyme, plant cell wall-degrading protein complexes found affixed to the surface of a variety of anaerobic microbes. The core of the cellulosome is a noncatalytic scaffoldin protein, which contains several type-I cohesin modules that bind type-I dockerin-containing enzymatic subunits, a cellulose-binding module, an X module, and a type-II dockerin that interacts with type-II cohesin-containing cell surface proteins. The unique arrangement of the enzymatic subunits in the cellulosome complex, made possible by the scaffoldin subunit, promotes enhanced substrate degradation relative to the enzymes free in solution. Despite representative high-resolution structures of all of the individual modules of the cellulosome, this mechanism of enzymatic synergy remains poorly understood. Consequently, a model of the entire cellulosome and a detailed picture of intermodular contacts will provide more detailed insight into cellulosome activity. Toward this goal, we have solved the structure of a multimodular heterodimeric complex from Clostridium thermocellum composed of the type-II cohesin module of the cell surface protein SdbA bound to a trimodular C-terminal fragment of the scaffoldin subunit CipA to a resolution of 1.95 A. The linker that connects the ninth type-I cohesin module and the X module has elevated temperature factors, reflecting an inherent flexibility within this region. Interestingly, a novel dimer interface was observed between CipA and a second, symmetry-related CipA molecule within the crystal structure, mediated by contacts between a type-I cohesin and an X module of a symmetry mate, resulting in two intertwined scaffoldins. Sedimentation velocity experiments confirmed that dimerization also occurs in solution. These observations support the intriguing possibility that individual cellulosomes can associate with one another via inter-scaffoldin interactions, which may play a role in the mechanism of action of the complex.


Journal of Biological Chemistry | 2012

Scaffoldin Conformation and Dynamics Revealed by a Ternary Complex from the Clostridium thermocellum Cellulosome.

Mark A. Currie; Jarrett J. Adams; Frédérick Faucher; Edward A. Bayer; Zongchao Jia; Steven P. Smith

Background: Scaffoldin structure is critical for cellulosome assembly and function. Results: A multimodular scaffoldin fragment displays conformational flexibility and oligomerization properties and reveals a unique orientation of the type I dockerin. Conclusion: The C terminus of the scaffoldin has unrestrained linker flexibility and may participate in higher order cellulosome organization. Significance: Scaffoldin structure and dynamics will inform the generation of designer cellulosomes. Cellulosomes are multienzyme complexes responsible for efficient degradation of plant cell wall polysaccharides. The nonenzymatic scaffoldin subunit provides a platform for cellulolytic enzyme binding that enhances the overall activity of the bound enzymes. Understanding the unique quaternary structural elements responsible for the enzymatic synergy of the cellulosome is hindered by the large size and inherent flexibility of these multiprotein complexes. Herein, we have used x-ray crystallography and small angle x-ray scattering to structurally characterize a ternary protein complex from the Clostridium thermocellum cellulosome that comprises a C-terminal trimodular fragment of the CipA scaffoldin bound to the SdbA type II cohesin module and the type I dockerin module from the Cel9D glycoside hydrolase. This complex represents the largest fragment of the cellulosome solved by x-ray crystallography to date and reveals two rigid domains formed by the type I cohesin·dockerin complex and by the X module-type II cohesin·dockerin complex, which are separated by a 13-residue linker in an extended conformation. The type I dockerin modules of the four structural models found in the asymmetric unit are in an alternate orientation to that previously observed that provides further direct support for the dual mode of binding. Conserved intermolecular contacts between symmetry-related complexes were also observed and may play a role in higher order cellulosome structure. SAXS analysis of the ternary complex revealed that the 13-residue intermodular linker of the scaffoldin subunit is highly dynamic in solution. These studies provide fundamental insights into modular positioning, linker flexibility, and higher order organization of the cellulosome.


Journal of Biological Chemistry | 2013

Small Angle X-ray Scattering Analysis of Clostridium thermocellum Cellulosome N-terminal Complexes Reveals a Highly Dynamic Structure

Mark A. Currie; Kate Cameron; Fernando M. V. Dias; Holly L. Spencer; Edward A. Bayer; Carlos M. G. A. Fontes; Steven P. Smith; Zongchao Jia

Background: The cellulosome N terminus contains the sole substrate-binding module of the cellulosome scaffoldin. Results: Two N-terminal cellulosomal fragments are devoid of intermodular interactions, are highly dynamic, and inhabit compact and elongated conformations equally. Conclusion: The characteristics of the cellulosome N terminus may facilitate its role in substrate binding. Significance: Information on cellulosome structure and dynamics aids in engineering designer cellulosomes. Clostridium thermocellum produces the prototypical cellulosome, a large multienzyme complex that efficiently hydrolyzes plant cell wall polysaccharides into fermentable sugars. This ability has garnered great interest in its potential application in biofuel production. The core non-catalytic scaffoldin subunit, CipA, bears nine type I cohesin modules that interact with the type I dockerin modules of secreted hydrolytic enzymes and promotes catalytic synergy. Because the large size and flexibility of the cellulosome preclude structural determination by traditional means, the structural basis of this synergy remains unclear. Small angle x-ray scattering has been successfully applied to the study of flexible proteins. Here, we used small angle x-ray scattering to determine the solution structure and to analyze the conformational flexibility of two overlapping N-terminal cellulosomal scaffoldin fragments comprising two type I cohesin modules and the cellulose-specific carbohydrate-binding module from CipA in complex with Cel8A cellulases. The pair distribution functions, ab initio envelopes, and rigid body models generated for these two complexes reveal extended structures. These two N-terminal cellulosomal fragments are highly dynamic and display no preference for extended or compact conformations. Overall, our work reveals structural and dynamic features of the N terminus of the CipA scaffoldin that may aid in cellulosome substrate recognition and binding.


Cellular Signalling | 2013

Structural basis of calcineurin activation by calmodulin.

Qilu Ye; Yedan Feng; Yanxia Yin; Frédérick Faucher; Mark A. Currie; Mona N. Rahman; Jin Jin; Shanze Li; Qun Wei; Zongchao Jia

Calcineurin is the only known calmodulin (CaM) activated protein phosphatase, which is involved in the regulation of numerous cellular and developmental processes and in calcium-dependent signal transduction. Although commonly assumed that CaM displaces the autoinhibitory domain (AID) blocking substrate access to its active site, the structural basis underlying activation remains elusive. We have created a fused ternary complex (CBA) by covalently linking three polypeptides: CaM, calcineurin regulatory B subunit (CnB) and calcineurin catalytic A subunit (CnA). CBA catalytic activity is comparable to that of fully activated native calcineurin in the presence of CaM. The crystal structure showed virtually no structural change in the active site and no evidence of CaM despite being covalently linked. The asymmetric unit contains four molecules; two parallel CBA pairs are packed in an antiparallel mode and the large cavities in crystal packing near the calcineurin active site would easily accommodate multiple positions of AID-bound CaM. Intriguingly, the conformation of the ordered segment of AID is not altered by CaM; thus, it is the disordered part of AID, which resumes a regular α-helical conformation upon binding to CaM, which is displaced by CaM for activation. We propose that the structural basis of calcineurin activation by CaM is through displacement of the disordered fragment of AID which otherwise impedes active site access.


Journal of Biological Chemistry | 2009

ADP-dependent 6-phosphofructokinase from Pyrococcus horikoshii OT3: structure determination and biochemical characterization of PH1645.

Mark A. Currie; Felipe Merino; Tatiana Skarina; Andrew Wong; Alexander Singer; Greg Brown; Alexei Savchenko; Andrés Caniuguir; Victoria Guixé; Alexander F. Yakunin; Zongchao Jia

Some hyperthermophilic archaea use a modified glycolytic pathway that employs an ADP-dependent glucokinase (ADP-GK) and an ADP-dependent phosphofructokinase (ADP-PFK) or, in the case of Methanococcus jannaschii, a bifunctional ADP-dependent glucophosphofructokinase (ADP-GK/PFK). The crystal structures of three ADP-GKs have been determined. However, there is no structural information available for ADP-PFKs or the ADP-GK/PFK. Here, we present the first crystal structure of an ADP-PFK from Pyrococcus horikoshii OT3 (PhPFK) in both apo- and AMP-bound forms determined to 2.0-Å and 1.9-Å resolution, respectively, along with biochemical characterization of the enzyme. The overall structure of PhPFK maintains a similar large and small α/β domain structure seen in the ADP-GK structures. A large conformational change accompanies binding of phosphoryl donor, acceptor, or both, in all members of the ribokinase superfamily characterized thus far, which is believed to be critical to enzyme function. Surprisingly, no such conformational change was observed in the AMP-bound PhPFK structure compared with the apo structure. Through comprehensive site-directed mutagenesis of the substrate binding pocket we identified residues that were critical for both substrate recognition and the phosphotransfer reaction. The catalytic residues and many of the substrate binding residues are conserved between PhPFK and ADP-GKs; however, four key residues differ in the sugar-binding pocket, which we have shown determine the sugar-binding specificity. Using these results we were able to engineer a mutant PhPFK that mimics the ADP-GK/PFK and is able to phosphorylate both fructose 6-phosphate and glucose.


Nature | 2017

Unique roles for histone H3K9me states in RNAi and heritable silencing of transcription

Gloria Jih; Nahid Iglesias; Mark A. Currie; Natarajan V. Bhanu; Joao A. Paulo; Steven P. Gygi; Benjamin A. Garcia; Danesh Moazed

Heterochromatic DNA domains have important roles in the regulation of gene expression and maintenance of genome stability by silencing repetitive DNA elements and transposons. From fission yeast to mammals, heterochromatin assembly at DNA repeats involves the activity of small noncoding RNAs (sRNAs) associated with the RNA interference (RNAi) pathway. Typically, sRNAs, originating from long noncoding RNAs, guide Argonaute-containing effector complexes to complementary nascent RNAs to initiate histone H3 lysine 9 di- and trimethylation (H3K9me2 and H3K9me3, respectively) and the formation of heterochromatin. H3K9me is in turn required for the recruitment of RNAi to chromatin to promote the amplification of sRNA. Yet, how heterochromatin formation, which silences transcription, can proceed by a co-transcriptional mechanism that also promotes sRNA generation remains paradoxical. Here, using Clr4, the fission yeast Schizosaccharomyces pombe homologue of mammalian SUV39H H3K9 methyltransferases, we design active-site mutations that block H3K9me3, but allow H3K9me2 catalysis. We show that H3K9me2 defines a functionally distinct heterochromatin state that is sufficient for RNAi-dependent co-transcriptional gene silencing at pericentromeric DNA repeats. Unlike H3K9me3 domains, which are transcriptionally silent, H3K9me2 domains are transcriptionally active, contain modifications associated with euchromatic transcription, and couple RNAi-mediated transcript degradation to the establishment of H3K9me domains. The two H3K9me states recruit reader proteins with different efficiencies, explaining their different downstream silencing functions. Furthermore, the transition from H3K9me2 to H3K9me3 is required for RNAi-independent epigenetic inheritance of H3K9me domains. Our findings demonstrate that H3K9me2 and H3K9me3 define functionally distinct chromatin states and uncover a mechanism for the formation of transcriptionally permissive heterochromatin that is compatible with its broadly conserved role in sRNA-mediated genome defence.


RNA | 2017

Structural and functional characterization of the TYW3/Taw3 class of SAM-dependent methyltransferases

Mark A. Currie; Greg Brown; Andrew Wong; Takayuki Ohira; Kei Sugiyama; Tsutomu Suzuki; Alexander F. Yakunin; Zongchao Jia

S-adenosylmethionine (SAM)-dependent methyltransferases regulate a wide range of biological processes through the modification of proteins, nucleic acids, polysaccharides, as well as various metabolites. TYW3/Taw3 is a SAM-dependent methyltransferase responsible for the formation of a tRNA modification known as wybutosine and its derivatives that are required for accurate decoding in protein synthesis. Here, we report the crystal structure of Taw3, a homolog of TYW3 from Sulfolobus solfataricus, which revealed a novel α/β fold. The sequence motif (S/T)xSSCxGR and invariant aspartate and histidine, conserved in TYW3/Taw3, cluster to form the catalytic center. These structural and sequence features indicate that TYW3/Taw3 proteins constitute a distinct class of SAM-dependent methyltransferases. Using site-directed mutagenesis along with in vivo complementation assays combined with mass spectrometry as well as ligand docking and cofactor binding assays, we have identified the active site of TYW3 and residues essential for cofactor binding and methyltransferase activity.


Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2010

Purification and crystallization of a multimodular heterotrimeric complex containing both type I and type II cohesin-dockerin interactions from the cellulosome of Clostridium thermocellum.

Mark A. Currie; Jarrett J. Adams; Sabrina Ali; Steven P. Smith; Zongchao Jia

The multimodular scaffoldin subunit CipA is the central component of the cellulosome, a multienzyme plant cell-wall-degrading complex, from Clostridium thermocellum. It captures secreted cellulases and hemicellulases and anchors the entire complex to the cell surface via high-affinity calcium-dependent interactions between cohesin and dockerin modules termed type I and type II interactions. The crystallization of a heterotrimeric complex comprising the type II cohesin module from the cell-surface protein SdbA, a trimodular C-terminal fragment of the scaffoldin CipA and the type I dockerin module from the CelD cellulase is reported. The crystals belonged to space group P2(1)2(1)2(1), with unit-cell parameters a = 119.37, b = 186.31, c = 191.17 A. The crystals diffracted to 2.7 A resolution with four or eight molecules of the ternary protein complex in the asymmetric unit.


Advances in Protein Chemistry | 2009

Preparation and Characterization of Bacterial Protein Complexes for Structural Analysis

Allan Matte; Guennadi Kozlov; Jean-François Trempe; Mark A. Currie; David L. Burk; Zongchao Jia; Kalle Gehring; Irena Ekiel; Albert M. Berghuis; Miroslaw Cygler

Bacteria mediate a large variety of biological processes using protein complexes. These complexes range from simple binary heterodimeric enzymes to more complex multi-subunit complexes that can be described as macromolecular machines. A key to understanding how these complexes function is obtaining structural information using methods that include electron microscopy, small-angle X-ray scattering, NMR spectroscopy, and X-ray crystallography. Here we describe a variety of approaches to the expression, purification, and biophysical characterization of bacterial protein complexes as a prerequisite to structural analysis. We also give several examples of the kinds of information these different biophysical approaches can provide and various experimental approaches to obtaining structure information for a given system. Further, we describe several examples of protein complexes where we have obtained structural data that have led to new biological insights.

Collaboration


Dive into the Mark A. Currie's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Danesh Moazed

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Edward A. Bayer

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge