Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark A. Fenwick is active.

Publication


Featured researches published by Mark A. Fenwick.


Biology of Reproduction | 2012

Characterization and significance of adhesion and junction-related proteins in mouse ovarian follicles.

Jocelyn M. Mora; Mark A. Fenwick; Laura Castle; Marianne Baithun; Timothy A. Ryder; Margaret Mobberley; Raffaella Carzaniga; Stephen Franks; Kate Hardy

ABSTRACT In the ovary, initiation of follicle growth is marked by cuboidalization of flattened granulosa cells (GCs). The regulation and cell biology of this shape change remains poorly understood. We propose that characterization of intercellular junctions and associated proteins is key to identifying as yet unknown regulators of this important transition. As GCs are conventionally described as epithelial cells, this study used mouse ovaries and isolated follicles to investigate epithelial junctional complexes (tight junctions [TJ], adherens junctions [AJ], and desmosomes) and associated molecules, as well as classic epithelial markers, by quantitative PCR and immunofluorescence. These junctions were further characterized using ultrastructural, calcium depletion and biotin tracer studies. Junctions observed by transmission electron microscopy between GCs and between GCs and oocyte were identified as AJs by expression of N-cadherin and nectin 2 and by the lack of TJ and desmosome-associated proteins. Follicles were also permeable to biotin, confirming a lack of functional TJs. Surprisingly, GCs lacked all epithelial markers analyzed, including E-cadherin, cytokeratin 8, and zonula occludens (ZO)-1alpha+. Furthermore, vimentin was expressed by GCs, suggesting a more mesenchymal phenotype. Under calcium-free conditions, small follicles maintained oocyte-GC contact, confirming the importance of calcium-independent nectin at this stage. However, in primary and multilayered follicles, lack of calcium resulted in loss of contact between GCs and oocyte, showing that nectin alone cannot maintain attachment between these two cell types. Lack of classic markers suggests that GCs are not epithelial. Identification of AJs during GC cuboidalization highlights the importance of AJs in regulating initiation of follicle growth.


Endocrinology | 2013

Investigations of TGF-β Signaling in Preantral Follicles of Female Mice Reveal Differential Roles for Bone Morphogenetic Protein 15

Mark A. Fenwick; Jocelyn M. Mora; Yosef T. Mansour; Christina Baithun; Stephen Franks; Kate Hardy

Bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9) are 2 closely related TGF-β ligands implicated as key regulators of follicle development and fertility. Animals harboring mutations of these factors often exhibit a blockage in follicle development beyond the primary stage and therefore little is known about the role of these ligands during subsequent (preantral) stages. Preantral follicles isolated from immature mice were cultured with combinations of BMP15, GDF9, and activin receptor-like kinase (ALK) inhibitors. Individually, GDF9 and BMP15 promoted follicle growth during the first 24 hours, whereas BMP15 subsequently (48-72 h) caused follicle shrinkage and atresia with increased granulosa cell apoptosis. Inhibition of ALK6 prevented the BMP15-induced reduction in follicle size and under basal conditions promoted a rapid increase in granulosa cell proliferation, suggesting BMP15 signals through ALK6, which in turn acts to restrain follicle growth. In the presence of GDF9, BMP15 no longer promoted atresia and in fact follicle growth was increased significantly more than with either ligand alone. This cooperative effect was accompanied by differential expression of Id1-3, Smad6-7, and Has2 and was blocked by the same ALK5 inhibitor used to block GDF9 signaling. Immunostaining for SMAD2/3 and SMAD1/5/8, representing the 2 main branches of TGF-β signaling, supported the fact that both canonical pathways have the potential to be active in growing follicles, whereas primordial follicles only express SMAD2/3. Overall results highlight differential effects of the 2 main TGF-β signaling pathways during preantral follicle growth.


Endocrinology | 2011

Identification and Regulation of Bone Morphogenetic Protein Antagonists Associated with Preantral Follicle Development in the Ovary

Mark A. Fenwick; Yosef T. Mansour; Stephen Franks; Kate Hardy

The TGFβ superfamily comprises several bone morphogenetic proteins (BMP) capable of exerting gonadotropin-independent effects on the development of small preantral follicles. In embryonic tissues, BMP concentration gradients, partly formed by antagonistic factors, are essential for establishing phenotypic fate. By examining the expression of candidate genes whose protein products are known to interact with BMP ligands, we set out to determine which antagonists would most likely contribute toward regulation of paracrine signaling during early follicle development. Juvenile mouse ovaries of 4, 8, 12, and 21 d of age enriched with follicles at successive developmental stages were used to assess changes in candidate gene transcripts by quantitative RT-PCR. Although some antagonists were found to be positively associated with the emergence of developing follicles (Nog, Htra1, Fst, Bmper, Vwc2), two (Sostdc1, Chrd) showed a corresponding reduction in expression. At each age, twisted gastrulation homolog 1 (Twsg1), Htra1, Nbl1, and Fst were consistently highly expressed and localization of these genes by in situ hybridization, and immunohistochemistry further highlighted a clear pattern of expression in granulosa cells of developing follicles. Moreover, with the exception of Nbl1, levels of these antagonists did not change in preantral follicles exposed to FSH in vitro, suggesting regulation by local factors. The presence of multiple antagonists in the juvenile ovary and their high level of expression in follicles imply the actions of certain growth factors are subject to local modulation and further highlights another important level of intraovarian regulation of follicle development.


Genes & Development | 2012

Bmi1 facilitates primitive endoderm formation by stabilizing Gata6 during early mouse development

Fabrice Lavial; Sylvain Bessonnard; Yusuke Ohnishi; Akiko Tsumura; Anil Chandrashekran; Mark A. Fenwick; Rute Alexandra Tomaz; Hiroyuki Hosokawa; Toshinori Nakayama; Ian Chambers; Takashi Hiiragi; Claire Chazaud; Véronique Azuara

The transcription factors Nanog and Gata6 are critical to specify the epiblast versus primitive endoderm (PrE) lineages. However, little is known about the mechanisms that regulate the protein stability and activity of these factors in the developing embryo. Here we uncover an early developmental function for the Polycomb group member Bmi1 in supporting PrE lineage formation through Gata6 protein stabilization. We show that Bmi1 is enriched in the extraembryonic (endoderm [XEN] and trophectodermal stem [TS]) compartment and repressed by Nanog in pluripotent embryonic stem (ES) cells. In vivo, Bmi1 overlaps with the nascent Gata6 and Nanog protein from the eight-cell stage onward before it preferentially cosegregates with Gata6 in PrE progenitors. Mechanistically, we demonstrate that Bmi1 interacts with Gata6 in a Ring finger-dependent manner to confer protection against Gata6 ubiquitination and proteasomal degradation. A direct role for Bmi1 in cell fate allocation is established by loss-of-function experiments in chimeric embryoid bodies. We thus propose a novel regulatory pathway by which Bmi1 action on Gata6 stability could alter the balance between Gata6 and Nanog protein levels to introduce a bias toward a PrE identity in a cell-autonomous manner.


international conference on digital signal processing | 2009

Object recognition in the ovary: Quantification of oocytes from microscopic images

Angelos Skodras; Stamatia Giannarou; Mark A. Fenwick; Stephen Franks; Jaroslav Stark; Kate Hardy

The ovary is a female organ that houses a fixed supply of germ cells (oocytes). The absolute number of oocytes at any given stage can be a useful indicator of fertility. Obtaining accurate assessments of the oocyte reserve in humans and experimental models can be time consuming and error prone. In this paper a new approach to facilitate oocyte counting in microscope images of mouse ovaries is presented. The mouse vasa homolog (MVH), an oocyte-specific protein, was labeled in microscope sections and used to develop an algorithm that can identify, count and estimate the size and coordinates of the oocytes. We use this automated approach to generate comparable data with conventional methods of oocyte counting.


Endocrinology | 2017

Androgen stimulates growth of mouse preantral follicles in vitro: interaction with follicle stimulating hormone and with growth factors of the TGFβ superfamily.

Mhairi Laird; Kacie Thomson; Mark A. Fenwick; Jocelyn M. Mora; Stephen Franks; Kate Hardy

Androgens are essential for the normal function of mature antral follicles but also have a role in the early stages of follicle development. Polycystic ovary syndrome (PCOS), the most common cause of anovulatory infertility, is characterized by androgen excess and aberrant follicle development that includes accelerated early follicle growth. We have examined the effects of testosterone and dihydrotestosterone (DHT) on development of isolated mouse preantral follicles in culture with the specific aim of investigating interaction with follicle-stimulating hormone (FSH), the steroidogenic pathway, and growth factors of the TGFβ superfamily that are known to have a role in early follicle development. Both testosterone and DHT stimulated follicle growth and augmented FSH-induced growth and increased the incidence of antrum formation among the granulosa cell layers of these preantral follicles after 72 hours in culture. Effects of both androgens were reversed by the androgen receptor antagonist flutamide. FSH receptor expression was increased in response to both testosterone and DHT, as was that of Star, whereas Cyp11a1 was down-regulated. The key androgen-induced changes in the TGFβ signaling pathway were down-regulation of Amh, Bmp15, and their receptors. Inhibition of Alk6 (Bmpr1b), a putative partner for Amhr2 and Bmpr2, by dorsomorphin resulted in augmentation of androgen-stimulated growth and modification of androgen-induced gene expression. Our findings point to varied effects of androgen on preantral follicle growth and function, including interaction with FSH-activated growth and steroidogenesis, and, importantly, implicate the intrafollicular TGFβ system as a key mediator of androgen action. These findings provide insight into abnormal early follicle development in PCOS.


Endocrinology | 2016

Onset and Heterogeneity of Responsiveness to FSH in Mouse Preantral Follicles in Culture.

Kate Hardy; Mark A. Fenwick; Jocelyn M. Mora; Mhairi Laird; Kacie Thomson; Stephen Franks

The obligatory role of follicle-stimulating hormone (FSH) in normal development and function of ovarian antral follicles is well recognized, but its function in preantral growth is less clear. The specific objective of this study was to investigate the response, in culture, to FSH of mouse preantral follicles of increasing size, focusing particularly on growth rate and gene expression. Preantral follicles were mechanically isolated from ovaries of C57BL/6 mice, 12 to 16 days postpartum, and single follicles cultured for up to 96 hours in medium alone (n = 511) or with recombinant human FSH 10 ng/mL (n = 546). Data were grouped according to initial follicle diameter in 6 strata ranging from <100 to >140 μm. Follicles of all sizes grew in the absence of FSH (P < 0.01, paired t test). All follicles grew at a faster rate (P < 0.0001) in the presence of 10 ng/mL FSH but larger follicles showed the greatest change in response to FSH. Even the smallest follicles expressed FSH receptor messenger RNA (mRNA). FSH-induced growth was inhibited by KT5720, an inhibitor of protein kinase A (PKA), implicating the PKA pathway in FSH-induced follicle growth. In response to FSH in vitro, FSH receptor mRNA (measured by quantitative polymerase chain reaction) was reduced (P < 0.01), as was Amh (P < 0.01), whereas expression of StAR (P < 0.0001) and the steroidogenic enzymes Cyp11a1 (P < 0.01) and Cyp19 (P < 0.0001) was increased. These results show heterogeneous responses to FSH according to initial follicle size, smaller follicles being less FSH dependent than larger preantral follicles. These findings strongly suggest that FSH has a physiological role in preantral follicle growth and function.


Journal of Cell Science | 2018

Nuclear exclusion of SMAD2/3 in granulosa cells is associated with primordial follicle activation in the mouse ovary

Kate Hardy; Jocelyn M. Mora; Carina M. Dunlop; Raffaella Carzaniga; Stephen Franks; Mark A. Fenwick

ABSTRACT Maintenance and activation of the limited supply of primordial follicles in the ovary are important determinants of reproductive lifespan. Currently, the molecular programme that maintains the primordial phenotype and the early events associated with follicle activation are not well defined. Here, we have systematically analysed these events using microscopy and detailed image analysis. Using the immature mouse ovary as a model, we demonstrate that the onset of granulosa cell (GC) proliferation results in increased packing density on the oocyte surface and consequent GC cuboidalization. These events precede oocyte growth and nuclear translocation of FOXO3a, a transcription factor important in follicle activation. Immunolabelling of the TGFβ signalling mediators and transcription factors SMAD2/3 revealed a striking expression pattern specific to GCs of small follicles. SMAD2/3 were expressed in the nuclei of primordial GCs but were mostly excluded in early growing follicles. In activated follicles, GC nuclei lacking SMAD2/3 generally expressed Ki67. These findings suggest that the first phenotypic changes during follicle activation are observed in GCs, and that TGFβ signalling is fundamental for regulating GC arrest and the onset of proliferation. Highlighted Article: New evidence highlights an association between nuclear expression of the TGFβ-driven transcription factors, SMAD2/3 and the proliferative state of granulosa cells of follicles in the ovarian reserve.


Reproduction | 2002

Immunohistochemical localization of active caspase-3 in the mouse ovary: growth and atresia of small follicles

Mark A. Fenwick; Peter R. Hurst


Endocrinology | 2006

Suppression of Prolactin-Induced Signal Transducer and Activator of Transcription 5b Signaling and Induction of Suppressors of Cytokine Signaling Messenger Ribonucleic Acid in the Hypothalamic Arcuate Nucleus of the Rat during Late Pregnancy and Lactation

Greg M. Anderson; Paulien Beijer; Angela S. Bang; Mark A. Fenwick; Stephen J. Bunn; David R. Grattan

Collaboration


Dive into the Mark A. Fenwick's collaboration.

Top Co-Authors

Avatar

Kate Hardy

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mhairi Laird

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge