Mark A. Hink
University of Amsterdam
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mark A. Hink.
Nature Cell Biology | 2007
Celine I Maeder; Mark A. Hink; Ali Kinkhabwala; Reinhard Mayr; Philippe I. H. Bastiaens; Michael Knop
Signal transduction through mitogen-activated protein kinase (MAPK) cascades is thought to occur through the assembly of macromolecular complexes. We quantified the abundance of complexes in the cytoplasm among the MAPKs Ste11, Ste7, Fus3 and the scaffold protein Ste5 in yeast pheromone signalling using fluorescence cross-correlation spectroscopy (FCCS). Significant complex concentrations were observed that remained unchanged on pheromone stimulation, demonstrating that global changes in complex abundances do not contribute to the transmission of signal through the cytoplasm. On the other hand, investigation of the distribution of active Fus3 (Fus3PP) across the cytoplasm using fluorescence lifetime imaging microscopy (FLIM) revealed a gradient of Fus3PP activity emanating from the tip of the mating projection. Spatial partitioning of Fus3 activating kinases to this site and deactivating phosphatases in the cytoplasm maintain this Fus3PP-activity distribution. Propagation of signalling from the shmoo is, therefore, spatially constrained by a gradient-generating reaction-diffusion mechanism.
Nature Methods | 2010
Joachim Goedhart; Laura van Weeren; Mark A. Hink; Norbert O. E. Vischer; Kees Jalink; Theodorus W. J. Gadella
Optimization of autofluorescent proteins by intensity-based screening of bacteria does not necessarily identify the brightest variant for eukaryotes. We report a strategy to screen excited state lifetimes, which identified cyan fluorescent proteins with long fluorescence lifetimes (>3.7 ns) and high quantum yields (>0.8). One variant, mTurquoise, was 1.5-fold brighter than mCerulean in mammalian cells and decayed mono-exponentially, making it an excellent fluorescence resonance energy transfer (FRET) donor.
Journal of Biological Chemistry | 2000
Mark A. Hink; R.A. Griep; Jan Willem Borst; A. van Hoek; M.H.M. Eppink; Arjen Schots; Antonie J. W. G. Visser
Structural information on intracellular fusions of the green fluorescent protein (GFP) of the jellyfish Aequorea victoria with endogenous proteins is required as they are increasingly used in cell biology and biochemistry. We have investigated the dynamic properties of GFP alone and fused to a single chain antibody raised against lipopolysaccharide of the outer cell wall of Gram-negative bacteria (abbreviated as scFv-GFP). The scFv moiety was functional as was proven in binding assays, which involved the use of both fluorescence correlation spectroscopy observing the binding of scFv-GFP to Gram-negative bacteria and a surface plasmon resonance cell containing adsorbed lipopolysaccharide antigen. The rotational motion of scFv-GFP has been investigated with time-resolved fluorescence anisotropy. However, the rotational correlation time of scFv-GFP is too short to account for globular rotation of the whole protein. This result can only be explained by assuming a fast hinge motion between the two fused proteins. A modeled structure of scFv-GFP supports this observation.
Biophysical Journal | 1998
Roland Brock; Mark A. Hink; Thomas M. Jovin
Fluorescence correlation microscopy (FCM), the combination of fluorescence correlation spectroscopy (FCS) and digital microscopy (Brock and Jovin, 1998. Cell. Mol. Biol. 44:847-856), has been implemented for measuring molecular diffusion and association in living cells with explicit consideration of autocorrelations arising from autofluorescence. Autofluorescence excited at 532 nm colocalizes with mitochondria, has flavin-like spectral characteristics, exhibits relaxation times characteristic for the diffusion of high-molecular-weight proteins, and depends on the incubation conditions of the cells. These time- and location-dependent properties preclude the assignment of universal background parameters. The lower limit for detection of microinjected dextran molecules labeled with the carboxymethylindocyanine dye Cy3 was a few thousand molecules per cell, and the diffusion constant of 1.7 x 10(-7) cm2/s agreed well with values measured with other methods. Based on the fluorescence signal per molecule (fpm) and the molecule number derived from autocorrelation analysis, a new method is devised to define intracellular association states. We conclude that FCM is a powerful, noninvasive method for probing molecular interactions in femtoliter volume elements within defined subcellular locations in living cells.
Journal of the American Chemical Society | 2012
Daria M. Shcherbakova; Mark A. Hink; L. Joosen; Theodorus W. J. Gadella; Vladislav V. Verkhusha
Multicolor imaging based on genetically encoded fluorescent proteins (FPs) is a powerful approach to study several dynamic processes in a live cell. We report a monomeric orange FP with a large Stokes shift (LSS), called LSSmOrange (excitation/emission at 437/572 nm), which fills up an existing spectral gap between the green-yellow and red LSSFPs. Brightness of LSSmOrange is five-fold larger than that of the brightest red LSSFP and similar to the green-yellow LSSFPs. LSSmOrange allows numerous multicolor applications using a single-excitation wavelength that was not possible before. Using LSSmOrange we developed four-color single-laser fluorescence cross-correlation spectroscopy, solely based on FPs. The quadruple cross-correlation combined with photon counting histogram techniques allowed quantitative single-molecule analysis of particles labeled with four FPs. LSSmOrange was further applied to simultaneously image two Förster resonance energy transfer pairs, one of which is the commonly used CFP-YFP pair, with a single-excitation laser line. The combination of LSSmOrange-mKate2 and CFP-YFP biosensors enabled imaging of apoptotic activity and calcium fluctuations in real time. The LSSmOrange mutagenesis, low-temperature, and isotope effect studies revealed a proton relay for the excited-state proton transfer responsible for the LSS phenotype.
Journal of Fluorescence | 2005
Jan Willem Borst; Mark A. Hink; Arie van Hoek; Antonie J. W. G. Visser
The fluorescence lifetime strongly depends on the immediate environment of the fluorophore. Time-resolved fluorescence measurements of the enhanced forms of ECFP and EYFP in water–glycerol mixtures were performed to quantify the effects of the refractive index and viscosity on the fluorescence lifetimes of these proteins. The experimental data show for ECFP and EYFP two fluorescence lifetime components: one short lifetime of about 1 ns and a longer lifetime of about 3.7 ns of ECFP and for EYFP 3.4. The fluorescence of ECFP is very heterogeneous, which can be explained by the presence of two populations: a conformation (67% present) where the fluorophore is less quenched than in the other conformation (33% present). The fluorescence decay of EYFP is much more homogeneous and the amplitude of the short fluorescence lifetime is about 5%. The fluorescence anisotropy decays show that the rotational correlation time of both proteins scales with increasing viscosity of the solvent similarly as shown earlier for GFP. The rotational correlation times are identical for ECFP and EYFP, which can be expected since both proteins have the same shape and size. The only difference observed is the slightly lower initial anisotropy for ECFP as compared to the one of EYFP.
PLOS ONE | 2011
Jeffrey Klarenbeek; Joachim Goedhart; Mark A. Hink; Theodorus W. J. Gadella; Kees Jalink
FRET-based sensors for cyclic Adenosine Mono Phosphate (cAMP) have revolutionized the way in which this important intracellular messenger is studied. The currently prevailing sensors consist of the cAMP-binding protein Epac1, sandwiched between suitable donor- and acceptor fluorescent proteins (FPs). Through a conformational change in Epac1, alterations in cellular cAMP levels lead to a change in FRET that is most commonly detected by either Fluorescence Lifetime Imaging (FLIM) or by Sensitized Emission (SE), e.g., by simple ratio-imaging. We recently reported a range of different Epac-based cAMP sensors with high dynamic range and signal-to-noise ratio. We showed that constructs with cyan FP as donor are optimal for readout by SE, whereas other constructs with green FP donors appeared much more suited for FLIM detection. In this study, we present a new cAMP sensor, termed TEpacVV, which employs mTurquoise as donor. Spectrally very similar to CFP, mTurquoise has about doubled quantum efficiency and unlike CFP, its fluorescence decay is strictly single-exponential. We show that TEpacVV appears optimal for detection both by FLIM and SE, that it has outstanding FRET span and signal-to-noise ratio, and improved photostability. Hence, TEpacVV should become the cAMP sensor of choice for new experiments, both for FLIM and ratiometric detection.
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2001
P.A.W. van den Berg; Jerker Widengren; Mark A. Hink; Rudolf Rigler; Ajwg Visser
Fluorescence Correlation Spectroscopy (FCS) was used to investigate the excited-state properties of flavins and flavoproteins in solution at the single molecule level. Flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD) and lipoamide dehydrogenase served as model systems in which the flavin cofactor is either free in solution (FMN, FAD) or enclosed in a protein environment as prosthetic group (lipoamide dehydrogenase). Parameters such as excitation light intensity, detection time and chromophore concentration were varied in order to optimize the autocorrelation traces. Only in experiments with very low light intensity ( < 10 kW/cm2), FMN and FAD displayed fluorescence properties equivalent to those found with conventional fluorescence detection methods. Due to the high triplet quantum yield of FMN, the system very soon starts to build up a population of non-fluorescent molecules, which is reflected in an apparent particle number far too low for the concentration used. Intramolecular photoreduction and subsequent photobleaching may well explain these observations. The effect of photoreduction was clearly shown by titration of FMN with ascorbic acid. While titration of FMN with the quenching agent potassium iodide at higher concentrations ( > 50 mM of I-) resulted in quenched flavin fluorescence as expected, low concentrations of potassium iodide led to a net enhancement of the de-excitation rate from the triplet state, thereby improving the fluorescence signal. FCS experiments on FAD exhibited an improved photostability of FAD as compared to FMN: As a result of stacking of the adenine and flavin moieties, FAD has a considerably lower triplet quantum yield. Correlation curves of lipoamide dehydrogenase yielded correct values for the diffusion time and number of molecules at low excitation intensities. However, experiments at higher light intensities revealed a process which can be explained by photophysical relaxation or photochemical destruction of the enzyme. As the time constant of the process induced at higher light intensities resembles the diffusion time constant of free flavin, photodestruction with the concomitant release of the cofactor offers a reasonable explanation.
Nature Methods | 2017
Daphne S. Bindels; Lindsay Haarbosch; Laura van Weeren; Marten Postma; Katrin E Wiese; Marieke Mastop; Sylvain Aumonier; Guillaume Gotthard; Antoine Royant; Mark A. Hink; Theodorus W. J. Gadella
We report the engineering of mScarlet, a truly monomeric red fluorescent protein with record brightness, quantum yield (70%) and fluorescence lifetime (3.9 ns). We developed mScarlet starting with a consensus synthetic template and using improved spectroscopic screening techniques; mScarlets crystal structure reveals a planar and rigidified chromophore. mScarlet outperforms existing red fluorescent proteins as a fusion tag, and it is especially useful as a Förster resonance energy transfer (FRET) acceptor in ratiometric imaging.
Journal of Fluorescence | 2003
Mark A. Hink; Nina V. Visser; Jan Willem Borst; Arie van Hoek; Antonie J. W. G. Visser
Corrected fluorescence excitation and emission spectra have been obtained from several enhanced variants of the green fluorescent protein (EGFP) isolated from the jellyfish Aequorea victoria, blue fluorescence protein (EBFP), cyan fluorescent protein (ECFP), EGFP and yellow fluorescent protein (EYFP–citrine) and from the red fluorescent protein (DsRed) isolated from the coral species Discosoma. The spectra are stored in a database. This report describes how the spectra can be used as templates to derive the critical transfer distance for any pair of fluorescent proteins.