Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark A. Murcko is active.

Publication


Featured researches published by Mark A. Murcko.


Cell | 1996

Crystal Structure of the Hepatitis C Virus NS3 Protease Domain Complexed with a Synthetic NS4A Cofactor Peptide

Joseph L. Kim; Kurt A. Morgenstern; Chao Lin; Ted Fox; Maureen Dwyer; J.A Landro; Stephen P. Chambers; William Markland; C.A Lepre; E.T O'Malley; S.L Harbeson; Charles M. Rice; Mark A. Murcko; Paul R. Caron; John A. Thomson

An estimated 1% of the global human population is infected by hepatitis C viruses (HCVs), and there are no broadly effective treatments for the debilitating progression of chronic hepatitis C. A serine protease located within the HCV NS3 protein processes the viral polyprotein at four specific sites and is considered essential for replication. Thus, it emerges as an attractive target for drug design. We report here the 2.5 angstrom resolution X-ray crystal structure of the NS3 protease domain complexed with a synthetic NS4A activator peptide. The protease has a chymotrypsin-like fold and features a tetrahedrally coordinated metal ion distal to the active site. The NS4A peptide intercalates within a beta sheet of the enzyme core.


Drug Discovery Today | 1998

Virtual screening : an overview

W. Patrick Walters; Matthew T. Stahl; Mark A. Murcko

Abstract Recent advances in combinatorial chemistry and high-throughput screening have made it possible for chemists to synthesize large numbers of compounds. However, this is still a small percentage of the total number that could be synthesized. Virtual screening encompasses a variety of computational techniques that allow chemists to reduce a huge virtual library to a more manageable size. This review presents the current state of the art in virtual screening and discusses approaches that will allow the evaluation of larger numbers of compounds.


Structure | 1998

Hepatitis C virus NS3 RNA helicase domain with a bound oligonucleotide: the crystal structure provides insights into the mode of unwinding.

Joseph L. Kim; Kurt A. Morgenstern; James P. Griffith; Maureen Dwyer; John A. Thomson; Mark A. Murcko; Chao Lin; Paul R. Caron

BACKGROUND Hepatitis C virus (HCV) represents a major health concern as it is responsible for a significant number of hepatitis cases worldwide. Much research has focused on the replicative enzymes of HCV as possible targets for more effective therapeutic agents. HCV NS3 helicase may provide one such suitable target. Helicases are enzymes which can unwind double-stranded regions of DNA or RNA in an ATP-dependent reaction. The structures of several helicases have been published but the structural details as to how ATP binding and hydrolysis are coupled to RNA unwinding are unknown. RESULTS The structure of the HCV NS3 RNA helicase domain complexed with a single-stranded DNA oligonucleotide has been solved to 2.2 A resolution. The protein consists of three structural domains with the oligonucleotide lying in a groove between the first two domains and the third. The first two domains have an adenylate kinase like fold, including a phosphate-binding loop in the first domain. CONCLUSIONS HCV NS3 helicase is a member of a superfamily of helicases, termed superfamily II. Residues of NS3 helicase which are conserved among superfamily II helicases line an interdomain cleft between the first two domains. The oligonucleotide binds in an orthogonal binding site and contacts relatively few conserved residues. There are no strong sequence-specific interactions with the oligonucleotide bases.


Chemistry & Biology | 1997

The structural basis for the specificity of pyridinylimidazole inhibitors of p38 MAP kinase

Keith P. Wilson; Patricia G. McCaffrey; Kathy Hsiao; Sam Pazhanisamy; Vincent Galullo; Guy W. Bemis; Matthew J. Fitzgibbon; Paul R. Caron; Mark A. Murcko; Michael S.-S. Su

BACKGROUND The p38 mitogen-activated protein (MAP) kinase regulates signal transduction in response to environmental stress. Pyridinylimidazole compounds are specific inhibitors of p38 MAP kinase that block the production of the cytokines interleukin-1beta and tumor necrosis factor alpha, and they are effective in animal models of arthritis, bone resorption and endotoxin shock. These compounds have been useful probes for studying the physiological functions of the p38-mediated MAP kinase pathway. RESULTS We report the crystal structure of a novel pyridinylimidazole compound complexed with p38 MAP kinase, and we demonstrate that this compound binds to the same site on the kinase as does ATP. Mutagenesis showed that a single residue difference between p38 MAP kinase and other MAP kinases is sufficient to confer selectivity among pyridinylimidazole compounds. CONCLUSIONS Our results reveal how pyridinylimidazole compounds are potent and selective inhibitors of p38 MAP kinase but not other MAP kinases. It should now be possible to design other specific inhibitors of activated p38 MAP kinase using the structure of the nonphosphorylated enzyme.


Chemistry & Biology | 1999

The SHAPES strategy: an NMR-based approach for lead generation in drug discovery.

Jasna Fejzo; Christopher A. Lepre; Jeffrey W. Peng; Guy W. Bemis; Ajay; Mark A. Murcko; Jonathan M. Moore

BACKGROUND Recently, it has been shown that nuclear magnetic resonance (NMR) may be used to identify ligands that bind to low molecular weight protein drug targets. Recognizing the utility of NMR as a very sensitive method for detecting binding, we have focused on developing alternative approaches that are applicable to larger molecular weight drug targets and do not require isotopic labeling. RESULTS A new method for lead generation (SHAPES) is described that uses NMR to detect binding of a limited but diverse library of small molecules to a potential drug target. The compound scaffolds are derived from shapes most commonly found in known therapeutic agents. NMR detection of low (microM-mM) affinity binding is achieved using either differential line broadening or transferred NOE (nuclear Overhauser effect) NMR techniques. CONCLUSIONS The SHAPES method for lead generation by NMR is useful for identifying potential lead classes of drugs early in a drug design program, and is easily integrated with other discovery tools such as virtual screening, high-throughput screening and combinatorial chemistry.


Advanced Drug Delivery Reviews | 2002

Prediction of 'drug-likeness'

W. Patrick Walters; Mark A. Murcko

Recent developments in combinatorial chemistry and high-throughput screening have dramatically increased the scale on which drug discovery programs are carried out. Along with these advances has come a need for automated methods of determining which compounds from a library should be synthesized and screened. These methods range from simple counting schemes to sophisticated machine learning techniques such as neural networks. While many of these methods have performed well in validation studies, the field is still in its formative stage. This paper reviews a number of computational techniques for identifying drug-like molecules and examines challenges facing the field.


Journal of Computer-aided Molecular Design | 1993

GenStar: A method for de novo drug design

Sergio H. Rotstein; Mark A. Murcko

SummaryA novel method, which we call GenStar, has been developed to suggest chemically reasonable structures which fill the active sites of enzymes. The proposed molecules provide good steric contact with the enzyme and exist in low-energy conformations. These structures are composed entirely of sp3 carbons which are grown sequentially, but which can also branch or form rings. User-selected enzyme seed atoms may be used to determine the area in which structure generation begins. Alternatively, GenStar may begin with a predocked ‘inhibitor core’ from which atoms are grown. For each new atom generated by the program, several hundred candidate positions representing a range of reasonable bond lengths, bond angles, and torsion angles are considered. Each of these candidates is scored, based on a simple enzyme contact model. The selected position is chosen at random from among the highest scoring cases. Duplicate structures may be removed using a variety of criteria. The compounds may be energy minimized and displayed using standard modeling programs. Also, it is possible to analyze the collection of all structures created by GenStar and locate binding motifs for common fragments such as benzene and naphthylene. Tests of the method using HIV protease, FK506 binding protein (FKBP-12) and human carbonic anhydrase (HCA-II) demonstrated that structures similar to known potent inhibitors may be generated with GenStar.


Journal of Medicinal Chemistry | 2014

Discovery of a Novel, First-in-Class, Orally Bioavailable Azaindole Inhibitor (VX-787) of Influenza PB2.

M.P Clark; Mark Ledeboer; I Davies; R.A Byrn; S.M Jones; Emanuele Perola; A Tsai; Marc Jacobs; K Nti-Addae; Upul K. Bandarage; M.J Boyd; R.S Bethiel; John J. Court; H Deng; John P. Duffy; W.A Dorsch; Luc J. Farmer; Huai Gao; Wenxin Gu; K Jackson; D.H Jacobs; J.M Kennedy; Brian Ledford; J Liang; Francois Maltais; Mark A. Murcko; Tiansheng Wang; M.W Wannamaker; H.B Bennett; Joshua R. Leeman

In our effort to develop agents for the treatment of influenza, a phenotypic screening approach utilizing a cell protection assay identified a series of azaindole based inhibitors of the cap-snatching function of the PB2 subunit of the influenza A viral polymerase complex. Using a bDNA viral replication assay (Wagaman, P. C., Leong, M. A., and Simmen, K. A. Development of a novel influenza A antiviral assay. J. Virol. Methods 2002, 105, 105-114) in cells as a direct measure of antiviral activity, we discovered a set of cyclohexyl carboxylic acid analogues, highlighted by VX-787 (2). Compound 2 shows strong potency versus multiple influenza A strains, including pandemic 2009 H1N1 and avian H5N1 flu strains, and shows an efficacy profile in a mouse influenza model even when treatment was administered 48 h after infection. Compound 2 represents a first-in-class, orally bioavailable, novel compound that offers potential for the treatment of both pandemic and seasonal influenza and has a distinct advantage over the current standard of care treatments including potency, efficacy, and extended treatment window.


Journal of Computational Chemistry | 1993

CONCEPTS: new dynamic algorithm for de novo drug suggestion

David A. Pearlman; Mark A. Murcko

We describe a new method for de novo design of molecules that bind to protein active sites. The method, CONCEPTS (Creation of Novel Compounds by Evaluation of Particles at Target Sites), places a group of atom‐like particles in the site. The particles are free to move within the site to improve binding to the protein. A key innovation of this technique is that covalent connections are made among the particles in a stochastic and dynamically reversible manner. These changes in the topology are either accepted or rejected depending on their ability to improve the total energy of the enzyme–inhibitor complex. The method is applied to two test systems: The FK506 binding protein (FKBP‐12) and HIV‐1 aspartyl protease. In both cases, we are able to predict, de novo, drugs that have striking similarities to known potent inhibitors and that can successfully be used to generate “hits” of the known inhibitors from a data base.


Antimicrobial Agents and Chemotherapy | 2015

Preclinical Activity of VX-787, a First-in-Class, Orally Bioavailable Inhibitor of the Influenza Virus Polymerase PB2 Subunit

Randal Byrn; Steven M. Jones; Hamilton Bennett; Chris M Bral; Michael P. Clark; Marc Jacobs; Ann D. Kwong; Mark Ledeboer; Joshua R. Leeman; Colleen F. McNeil; Mark A. Murcko; Azin Nezami; Emanuele Perola; Rene Rijnbrand; Kumkum Saxena; Alice W. Tsai; Yi Zhou; Paul S. Charifson

ABSTRACT VX-787 is a novel inhibitor of influenza virus replication that blocks the PB2 cap-snatching activity of the influenza viral polymerase complex. Viral genetics and X-ray crystallography studies provide support for the idea that VX-787 occupies the 7-methyl GTP (m7GTP) cap-binding site of PB2. VX-787 binds the cap-binding domain of the PB2 subunit with a KD (dissociation constant) of 24 nM as determined by isothermal titration calorimetry (ITC). The cell-based EC50 (the concentration of compound that ensures 50% cell viability of an uninfected control) for VX-787 is 1.6 nM in a cytopathic effect (CPE) assay, with a similar EC50 in a viral RNA replication assay. VX-787 is active against a diverse panel of influenza A virus strains, including H1N1pdm09 and H5N1 strains, as well as strains with reduced susceptibility to neuraminidase inhibitors (NAIs). VX-787 was highly efficacious in both prophylaxis and treatment models of mouse influenza and was superior to the neuraminidase inhibitor, oseltamivir, including in delayed-start-to-treat experiments, with 100% survival at up to 96 h postinfection and partial survival in groups where the initiation of therapy was delayed up to 120 h postinfection. At different doses, VX-787 showed a 1-log to >5-log reduction in viral load (relative to vehicle controls) in mouse lungs. Overall, these favorable findings validate the PB2 subunit of the viral polymerase as a drug target for influenza therapy and support the continued development of VX-787 as a novel antiviral agent for the treatment of influenza infection.

Collaboration


Dive into the Mark A. Murcko's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge