Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Keith P. Wilson is active.

Publication


Featured researches published by Keith P. Wilson.


Chemistry & Biology | 1997

The structural basis for the specificity of pyridinylimidazole inhibitors of p38 MAP kinase

Keith P. Wilson; Patricia G. McCaffrey; Kathy Hsiao; Sam Pazhanisamy; Vincent Galullo; Guy W. Bemis; Matthew J. Fitzgibbon; Paul R. Caron; Mark A. Murcko; Michael S.-S. Su

BACKGROUND The p38 mitogen-activated protein (MAP) kinase regulates signal transduction in response to environmental stress. Pyridinylimidazole compounds are specific inhibitors of p38 MAP kinase that block the production of the cytokines interleukin-1beta and tumor necrosis factor alpha, and they are effective in animal models of arthritis, bone resorption and endotoxin shock. These compounds have been useful probes for studying the physiological functions of the p38-mediated MAP kinase pathway. RESULTS We report the crystal structure of a novel pyridinylimidazole compound complexed with p38 MAP kinase, and we demonstrate that this compound binds to the same site on the kinase as does ATP. Mutagenesis showed that a single residue difference between p38 MAP kinase and other MAP kinases is sufficient to confer selectivity among pyridinylimidazole compounds. CONCLUSIONS Our results reveal how pyridinylimidazole compounds are potent and selective inhibitors of p38 MAP kinase but not other MAP kinases. It should now be possible to design other specific inhibitors of activated p38 MAP kinase using the structure of the nonphosphorylated enzyme.


Journal of Biological Chemistry | 1997

Substrate and Inhibitor Specificity of Interleukin-1β-converting Enzyme and Related Caspases

Nara Margolin; Scott A. Raybuck; Keith P. Wilson; Wenyong Chen; Ted Fox; Yong Gu; David J. Livingston

Interleukin-1β-converting enzyme (ICE) is a novel cysteine protease responsible for the cleavage of pre-interleukin-1β (pre-IL-1β) to the mature cytokine and a member of a family of related proteases (the caspases) that includes the Caenorhabditis elegans cell death gene product, CED-3. In addition to their sequence homology, these cysteine proteases display an unusual substrate specificity for peptidyl sequences with a P1 aspartate residue. We have examined the kinetics of processing pre-IL-1β to the mature form by ICE and three of its homologs, TX, CPP-32, and CMH-1. Of the ICE homologs, only TX processes pre-IL-1β, albeit with a catalytic efficiency 250-fold less than ICE itself. We also investigated the ability of these four proteases to process poly(ADP-ribose) polymerase, a DNA repair enzyme that is cleaved within minutes of the onset of apoptosis. Every caspase examined cleaves PARP, with catalytic efficiencies ranging from 2.3 × 106 M−1 s−1 for CPP32 to 1.0 × 103 M−1 s−1 for TX. In addition, we report kinetic constants for several reversible inhibitors and irreversible inactivators, which have been used to implicate one or more caspases in the apoptotic proteolysis cascade. Ac-Asp-Glu-Val-Asp aldehyde (DEVD-CHO) is a potent inhibitor of CPP-32 with a Ki value of 0.5 nM, but is also potent as inhibitor of CMH-1 (Ki = 35 nM) and ICE (Ki = 15 nM). The x-ray crystal structure of DEVD-CHO complexed to ICE presented here reveals electrostatic interactions not present in the Ac-YVAD-CHO co-complex structure (Wilson, K. P., Black, J.-A. F., Thomson, J. A., Kim, E. E., Griffith, J. P., Navia, M. A., Murcko, M. A., Chambers, S. P., Aldape, R. A., Raybuck, S. A., and Livingston, D. J. (1994) Nature 370, 270-275), accounting for the surprising potency of this inhibitor against ICE.


Journal of Biological Chemistry | 1996

Crystal structure of p38 mitogen-activated protein kinase.

Keith P. Wilson; Matthew J. Fitzgibbon; Paul R. Caron; James P. Griffith; Wenyong Chen; Patricia G. McCaffrey; Stephen P. Chambers; Michael S.-S. Su

p38 mitogen-activated protein kinase is activated by environmental stress and cytokines and plays a role in transcriptional regulation and inflammatory responses. The crystal structure of the apo, unphosphorylated form of p38 kinase has been solved at 2.3 Å resolution. The fold and topology of p38 is similar to ERK2 (Zhang, F., Strand, A., Robbins, D., Cobb, M. H., and Goldsmith, E. J. (1994) Nature 367, 704-711). The relative orientation of the two domains of p38 kinase is different from that observed in the active form of cAMP-dependent protein kinase. The twist results in a misalignment of the active site of p38, suggesting that the orientation of the domains would have to change before catalysis could proceed. The residues that are phosphorylated upon activation of p38 are located on a surface loop that occupies the peptide binding channel. Occlusion of the active site by the loop, and misalignment of catalytic residues, may account for the low enzymatic activity of unphosphorylated p38 kinase.


Chemistry & Biology | 2000

The structures of caspases-1, -3, -7 and -8 reveal the basis for substrate and inhibitor selectivity

Yunyi Wei; Ted Fox; Steve P Chambers; JoAnne Sintchak; Joyce T. Coll; Julian Golec; Lora Swenson; Keith P. Wilson; Paul S. Charifson

BACKGROUND Peptide inhibitors of caspases have helped define the role of these cysteine proteases in biology. Structural and biochemical characterization of the caspase enzymes may contribute to the development of new drugs for the treatment of caspase-mediated inflammation and apoptosis. RESULTS The crystal structure of the previously unpublished caspase-7 (Csp7; 2.35 A) bound to the reversible tetrapeptide aldehyde inhibitor acetyl-Asp-Glu-Val-Asp-CHO is compared with crystal structures of caspases-1 (2.3 A), -3 (2.2 A), and -8 (2.65 A) bound to the same inhibitor. Csp7 is a close homolog of caspase-3 (Csp3), and these two caspases possess some quarternary structural characteristics that support their unique role among the caspase family. However, although Csp3 and Csp7 are quite similar overall, they were found to have a significantly different substitution pattern of amino acids in and around the S4-binding site. CONCLUSIONS These structures span all three caspase subgroups, and provide a basis for inferring substrate and inhibitor binding, as well as selectivity for the entire caspase family. This information will influence the design of selective caspase inhibitors to further elucidate the role of caspases in biology and hopefully lead to the design of therapeutic agents to treat caspase-mediated diseases, such as rheumatoid arthritis, certain neurogenerative diseases and stroke.


Structure | 1998

Crystal structure of JNK3: a kinase implicated in neuronal apoptosis.

Xiaoling Xie; Yong Gu; Ted Fox; Joyce T. Coll; Mark A. Fleming; William Markland; Paul R. Caron; Keith P. Wilson; Michael S-S Su

BACKGROUND The c-Jun N-terminal kinases (JNKs) are members of the mitogen-activated protein (MAP) kinase family, and regulate signal transduction in response to environmental stress. Activation and nuclear localization of JNK3, a neuronal-specific isoform of JNK, has been associated with hypoxic and ischemic damage of CA1 neurons in the hippocampus. Knockout mice lacking JNK3 showed reduced apoptosis of hippocampal neurons and reduced seizure induced by kainic acid, a glutamate-receptor agonist. Thus, JNK3 may be important in the pathology of neurological disorders and is of significant medical interest. RESULTS We report here the structure of unphosphorylated JNK3 in complex with adenylyl imidodiphosphate, an ATP analog. JNK3 has a typical kinase fold, with the ATP-binding site situated within a cleft between the N- and C-terminal domains. In contrast to other known MAP kinase structures, the ATP-binding site of JNK3 is well ordered; the glycine-rich nucleotide-binding sequence forms a beta-strand-turn-beta-strand structure over the nucleotide. Unphosphorylated JNK3 assumes an open conformation, in which the N- and C-terminal domains are twisted apart relative to their positions in cAMP-dependent protein kinase. The rotation leads to the misalignment of some of the catalytic residues. The phosphorylation lip of JNK3 partially blocks the substrate-binding site. CONCLUSIONS This is the first JNK structure to be determined, providing a unique opportunity to compare structures from the three MAP kinase subfamilies. The structure reveals atomic-level details of the shape of JNK3 and the interactions between the kinase and the nucleotide. The misalignment of catalytic residues and occlusion of the active site by the phosphorylation lip may account for the low activity of unphosphorylated JNK3. The structure provides a framework for understanding the substrate specificity of different JNK isoforms, and should aid the design of selective JNK3 inhibitors.


Structure | 1999

The structure of phosphorylated P38γ is monomeric and reveals a conserved activation-loop conformation

Steve Bellon; Matthew J. Fitzgibbon; Ted Fox; Hsun-Mei Hsiao; Keith P. Wilson

BACKGROUND Mitogen-activated protein (MAP) kinases mediate the cellular response to stimuli such as pro-inflammatory cytokines and environmental stress. P38gamma is a new member of the MAP kinase family, and is expressed at its highest levels in skeletal muscle. P38gamma is 63% identical in sequence to P38alpha. The structure of P38alpha MAP kinase has been determined in the apo, unphosphorylated, inactive form. The structures of apo unphosphorylated ERK2, a related MAP kinase, and apo phosphorylated ERK2 have also been determined. RESULTS We have determined the structure of doubly phosphorylated P38gamma in complex with an ATP analog by X-ray crystallography. This is the first report of a structure of an activated kinase in the P38 subfamily, and the first bound to a nucleotide. P38gamma residue phosphoryl-Thr183 forms hydrogen bonds with five basic amino acids, and these interactions induce an interdomain rotation. The conformation of the activation loop of P38gamma is almost identical to that observed in the structure of activated ERK2. However, unlike ERK2, the crystal structure and solution studies indicate that activated P38gamma exists as a monomer. CONCLUSIONS Interactions mediated by phosphoryl-Thr183 induce structural changes that direct the domains and active-site residues of P38gamma into a conformation consistent with catalytic activity. The conformation of the phosphorylation loop is likely to be similar in all activated MAP kinases, but not all activated MAP kinases form dimers.


Current Opinion in Chemical Biology | 2002

The genesis of high-throughput structure-based drug discovery using protein crystallography

Peter Kuhn; Keith P. Wilson; Marianne G. Patch; Raymond C. Stevens

Over the past 12 years, drugs have been developed using structure-based drug design relying upon traditional crystallographic methods. Established successes, such as the drugs designed against HIV-1 protease and neuraminidase, demonstrate the utility of a structure-based approach in the drug-discovery process. However, the approach has historically lacked throughput and reliability capabilities; these bottlenecks are being overcome by breakthroughs in high-throughput structural biology. Recent technological innovations such as submicroliter high-throughput crystallization, high-performance synchrotron beamlines and rapid binding-site analysis of de novo targets using virtual ligand screening and small molecule co-crystallization have resulted in a significant advance in structure-based drug discovery.


Bioorganic & Medicinal Chemistry Letters | 1997

Structure-based design of non-peptidic pyridone aldehydes as inhibitors of interleukin-1β converting enzyme

Julian Golec; Michael Mullican; Mark A. Murcko; Keith P. Wilson; David Kay; Stuart Donald Jones; Robert Murdoch; Guy W. Bemis; Scott A. Raybuck; Yu-Ping Luong; David J. Livingston

Abstract Pyridone derivatives, especially with 6-aryl substituents, have been shown to be useful P2-P3 peptidomimetic scaffolds for the design of potent inhibitors of ICE.


ACS Medicinal Chemistry Letters | 2011

The Discovery of VX-745: A Novel and Selective p38α Kinase Inhibitor

John P. Duffy; Edmund Harrington; Francesco G. Salituro; John Cochran; Jeremy Green; Huai Gao; Guy W. Bemis; Ghotas Evindar; Vincent Galullo; Pamella J. Ford; Ursula A. Germann; Keith P. Wilson; Steven Bellon; Guanging Chen; Paul Taslimi; Peter Jones; Cassey Huang; S. Pazhanisamy; Y. Wang; Mark A. Murcko; Michael S.-S. Su

The synthesis of novel, selective, orally active 2,5-disubstituted 6H-pyrimido[1,6-b]pyridazin-6-one p38α inhibitors is described. Application of structural information from enzyme-ligand complexes guided the selection of screening compounds, leading to the identification of a novel class of p38α inhibitors containing a previously unreported bicyclic heterocycle core. Advancing the SAR of this series led to the eventual discovery of 5-(2,6-dichlorophenyl)-2-(2,4-difluorophenylthio)-6H-pyrimido[1,6-b]pyridazin-6-one (VX-745). VX-745 displays excellent enzyme activity and selectivity, has a favorable pharmacokinetic profile, and demonstrates good in vivo activity in models of inflammation.


Nature | 1994

Structure and mechanism of interleukin-1 beta converting enzyme.

Keith P. Wilson; J.A Black; John A. Thomson; E.E Kim; J.P Griffith; M.A Navia; M.A Murcko; S.P Chambers; R.A Aldape; S.A. Raybuck

Collaboration


Dive into the Keith P. Wilson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yong Gu

Vertex Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Su

Vertex Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ted Fox

Vertex Pharmaceuticals

View shared research outputs
Researchain Logo
Decentralizing Knowledge