Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark A. Ringer is active.

Publication


Featured researches published by Mark A. Ringer.


Bulletin of the American Meteorological Society | 2005

The Geostationary Earth Radiation Budget Project

John E. Harries; Jaqueline E. Russell; J. Hanafin; Helen E. Brindley; Joanna M. Futyan; J. Rufus; S. Kellock; G. Matthews; R. Wrigley; J. Mueller; R. Mossavati; J. Ashmall; Eric C. Sawyer; D. E. Parker; Martin E. Caldwell; P. M. Allan; Adam Smith; M. J. Bates; B. Coan; B. C. Stewart; D. R. Lepine; L. A. Cornwall; D. R. Corney; M. J. Ricketts; D. Drummond; D. Smart; R. Cutler; Siegfried Dewitte; Nicolas Clerbaux; L. Gonzalez

This paper reports on a new satellite sensor, the Geostationary Earth Radiation Budget (GERB) experiment. GERB is designed to make the first measurements of the Earths radiation budget from geostationary orbit. Measurements at high absolute accuracy of the reflected sunlight from the Earth, and the thermal radiation emitted by the Earth are made every 15 min, with a spatial resolution at the subsatellite point of 44.6 km (north–south) by 39.3 km (east–west). With knowledge of the incoming solar constant, this gives the primary forcing and response components of the top-of-atmosphere radiation. The first GERB instrument is an instrument of opportunity on Meteosat-8, a new spin-stabilized spacecraft platform also carrying the Spinning Enhanced Visible and Infrared (SEVIRI) sensor, which is currently positioned over the equator at 3.5°W. This overview of the project includes a description of the instrument design and its preflight and in-flight calibration. An evaluation of the instrument performance after ...


Journal of Climate | 2014

Origins of the solar radiation biases over the Southern Ocean in CFMIP2 models

Alejandro Bodas-Salcedo; Keith D. Williams; Mark A. Ringer; I. Beau; Jason N. S. Cole; Jean-Louis Dufresne; Tsuyoshi Koshiro; Bjorn Stevens; Zhili Wang; Tokuta Yokohata

AbstractCurrent climate models generally reflect too little solar radiation over the Southern Ocean, which may be the leading cause of the prevalent sea surface temperature biases in climate models. The authors study the role of clouds on the radiation biases in atmosphere-only simulations of the Cloud Feedback Model Intercomparison Project phase 2 (CFMIP2), as clouds have a leading role in controlling the solar radiation absorbed at those latitudes. The authors composite daily data around cyclone centers in the latitude band between 40° and 70°S during the summer. They use cloud property estimates from satellite to classify clouds into different regimes, which allow them to relate the cloud regimes and their associated radiative biases to the meteorological conditions in which they occur. The cloud regimes are defined using cloud properties retrieved using passive sensors and may suffer from the errors associated with this type of retrievals. The authors use information from the Cloud–Aerosol Lidar and I...


Climate Dynamics | 2015

Global and European climate impacts of a slowdown of the AMOC in a high resolution GCM

Laura Jackson; R. Kahana; Tim Graham; Mark A. Ringer; Tim Woollings; Jennifer Mecking; Richard A. Wood

Abstract The impacts of a hypothetical slowdown in the Atlantic Meridional Overturning Circulation (AMOC) are assessed in a state-of-the-art global climate model (HadGEM3), with particular emphasis on Europe. This is the highest resolution coupled global climate model to be used to study the impacts of an AMOC slowdown so far. Many results found are consistent with previous studies and can be considered robust impacts from a large reduction or collapse of the AMOC. These include: widespread cooling throughout the North Atlantic and northern hemisphere in general; less precipitation in the northern hemisphere midlatitudes; large changes in precipitation in the tropics and a strengthening of the North Atlantic storm track. The focus on Europe, aided by the increase in resolution, has revealed previously undiscussed impacts, particularly those associated with changing atmospheric circulation patterns. Summer precipitation decreases (increases) in northern (southern) Europe and is associated with a negative summer North Atlantic Oscillation signal. Winter precipitation is also affected by the changing atmospheric circulation, with localised increases in precipitation associated with more winter storms and a strengthened winter storm track. Stronger westerly winds in winter increase the warming maritime effect while weaker westerlies in summer decrease the cooling maritime effect. In the absence of these circulation changes the cooling over Europe’s landmass would be even larger in both seasons. The general cooling and atmospheric circulation changes result in weaker peak river flows and vegetation productivity, which may raise issues of water availability and crop production.


Environmental Research Letters | 2012

Reversibility in an Earth System model in response to CO 2 concentration changes

Olivier Boucher; Paul R. Halloran; Eleanor J. Burke; M Doutriaux-Boucher; Chris D. Jones; Jason Lowe; Mark A. Ringer; Eddy Robertson; Peili Wu

We use the HadGEM2-ES Earth System model to examine the degree of reversibility of a wide range of components of the Earth System under idealized climate change scenarios where the atmospheric CO2 concentration is gradually increased to four times the pre-industrial level and then reduced at a similar rate from several points along this trajectory. While some modelled quantities respond almost immediately to the atmospheric CO2 concentrations, others exhibit a time lag relative to the change in CO2. Most quantities also exhibit a lag relative to the global-mean surface temperature change, which can be described as a hysteresis behaviour. The most surprising responses are from low-level clouds and ocean stratification in the Southern Ocean, which both exhibit hysteresis on timescales longer than expected. We see no evidence of critical thresholds in these simulations, although some of the hysteresis phenomena become more apparent above 2???CO2 or 3???CO2. Our findings have implications for the parametrization of climate impacts in integrated assessment and simple climate models and for future climate studies of geoengineering scenarios.


Journal of Climate | 2002

Influence of Dynamics on the Changes in Tropical Cloud Radiative Forcing during the 1998 El Niño

Richard P. Allan; A. Slingo; Mark A. Ringer

Abstract Satellite measurements of the radiation budget and data from the U.S. National Centers for Environmental Prediction–National Center for Atmospheric Research reanalysis are used to investigate the links between anomalous cloud radiative forcing over the tropical west Pacific warm pool and the tropical dynamics and sea surface temperature (SST) distribution during 1998. The ratio, N, of the shortwave cloud forcing (SWCF) to longwave cloud forcing (LWCF) (N = −SWCF/LWCF) is used to infer information on cloud altitude. A higher than average N during 1998 appears to be related to two separate phenomena. First, dynamic regime-dependent changes explain high values of N (associated with low cloud altitude) for small magnitudes of SWCF and LWCF (low cloud fraction), which reflect the unusual occurrence of mean subsiding motion over the tropical west Pacific during 1998, associated with the anomalous SST distribution. Second, Tropics-wide long-term changes in the spatial-mean cloud forcing, independent of ...


Geophysical Research Letters | 2014

Global-mean radiative feedbacks and forcing in atmosphere-only and coupled atmosphere-ocean climate change experiments

Mark A. Ringer; Timothy Andrews; Mark J. Webb

Analysis of the available Coupled Model Intercomparison Project Phase 5 models suggests that sea surface temperature-forced, atmosphere-only global warming experiments (“amip4K,” “amipFuture,” and “aqua4K”) are a good guide to the global cloud feedbacks determined from coupled atmosphere-ocean CO2-forced simulations, including the intermodel spread. Differences in the total climate feedback parameter between the experiments arise primarily from differences in the clear-sky feedbacks which can largely be anticipated from the nature of the experimental design. The effective CO2 radiative forcing is anticorrelated with the total feedback in the coupled simulations. This anticorrelation strengthens as the experimental design becomes simpler, the number of potential degrees of freedom of the systems response reduces, and the relevant physical processes can be identified. In the aquaplanet simulations the anticorrelation is primarily driven by opposing changes in the rapid cloud adjustment to CO2 and the net cloud response to increased surface warming. Establishing a physical explanation for this behavior is important future work.


Tellus A | 2004

Evaluating climate model simulations of tropical cloud

Mark A. Ringer; Richard P. Allan

The representation of tropical cloud and its radiative effects in the Hadley Centre climate model are evaluated using a combination of Earth observation data and meteorological reanalyses. It is shown that useful information regarding the model’s physical parametrizations can be obtained by considering cloud radiative effects and cloud types in terms of ‘dynamical regimes’, defined in terms of sea surface temperature and large-scale vertical motion. In addition to comparisons with observed top-of-atmosphere radiation budget parameters and total cloud amount, information is obtained through direct comparisons of International Satellite Cloud Climatology Project (ISCCP) cloud types, defined according to cloud top pressure and optical depth, with corresponding model diagnostics. An analysis of the atmosphereonly model, HadAM3, demonstrates how errors in the albedo and outgoing long-wave radiation can be related to the simulation of particular cloud types in the different dynamical regimes. Inconsistencies between the simulations of the various cloud types and the top-of-atmosphere radiation budget are also highlighted. A version of the model including several new cloud-related parametrizations is then examined. A more consistent comparison with the observed radiation budget and cloud amounts is obtained, although deficiencies in the simulation still remain. A parametrization for the radiative effects of convective anvils and the impact of a new boundary layer mixing scheme are examined in more detail. Finally, it is shown how the climate model’s ability to simulate the observed interannual variability of cloud in the equatorial Pacific follows directly from the analysis according to dynamical regimes.


Climate Dynamics | 2012

A step-response approach for predicting and understanding non-linear precipitation changes

Peter Good; William Ingram; F. Hugo Lambert; Jason Lowe; Jonathan M. Gregory; Mark J. Webb; Mark A. Ringer; Peili Wu

Future changes in precipitation represent one of the most important and uncertain possible effects of future climate change. We demonstrate a new approach based on idealised CO2 step-change general circulation model (GCM) experiments, and test it using the HadCM3 GCM. The approach has two purposes: to help understand GCM projections, and to build and test a fast simple model for precipitation projections under a wide range of forcing scenarios. Overall, we find that the CO2 step experiments contain much information that is relevant to transient projections, but that is more easily extracted due to the idealised experimental design. We find that the temporary acceleration of global-mean precipitation in this GCM following CO2 ramp-down cannot be fully explained simply using linear responses to CO2 and temperature. A more complete explanation can be achieved with an additional term representing interaction between CO2 and temperature effects. Energy budget analysis of this term is dominated by clear-sky outgoing long-wave radiation (CSOLR) and sensible heating, but cloud and short-wave terms also contribute. The dominant CSOLR interaction is attributable to increased CO2 raising the mean emission level to colder altitudes, which reduces the rate of increase of OLR with warming. This behaviour can be reproduced by our simple model. On regional scales, we compare our approach with linear ‘pattern-scaling’ (scaling regional responses by global-mean temperature change). In regions where our model predicts linear change, pattern-scaling works equally well. In some regions, however, substantial deviations from linear scaling with global-mean temperature are found, and our simple model provides more accurate projections. The idealised experiments reveal a complex pattern of non-linear behaviour. There are likely to be a range of controlling physical mechanisms, different from those dominating the global-mean response, requiring focussed investigation for individual regions, and in other GCMs.


Philosophical Transactions of the Royal Society A | 2007

The Met Office Hadley Centre climate modelling capability: the competing requirements for improved resolution, complexity and dealing with uncertainty

V Pope; Simon J. Brown; R Clark; Matthew D. Collins; W. J. Collins; C. Dearden; J Gunson; Glen R. Harris; Chris D. Jones; A. B. Keen; Jason Lowe; Mark A. Ringer; C. A. Senior; Stephen Sitch; Mark J. Webb; S. Woodward

Predictions of future climate change require complex computer models of the climate system to represent the full range of processes and interactions that influence climate. The Met Office Hadley Centre uses ‘families’ of models as part of the Met Office Unified Model Framework to address different classes of problems. The HadGEM family is a suite of state-of-the-art global environment models that are used to reduce uncertainty and represent and predict complex feedbacks. The HadCM3 family is a suite of well established but cheaper models that are used for multiple simulations, for example, to quantify uncertainty or to test the impact of multiple emissions scenarios.


Climate Dynamics | 2013

Quantitative evaluation of the seasonal variations in climate model cloud regimes

Yoko Tsushima; Mark A. Ringer; Mark J. Webb; Keith D. Williams

An extended cloud-clustering method to assess the seasonal variation of clouds is applied to five CMIP5 models. The seasonal variation of the total cloud radiative effect (CRE) is dominated by variations in the relative frequency of occurrence of the different cloud regimes. Seasonal variations of the CRE within the individual regimes contribute much less. This is the case for both observations, models and model errors. The error in the seasonal variation of cloud regimes, and its breakdown into mean amplitude and time varying components, are quantified with a new metric. The seasonal variation of the CRE of the cloud regimes is relatively well simulated by the models in the tropics, but less well in the extra-tropics. The stratocumulus regime has the largest seasonal variation of shortwave CRE in the tropics, despite having a small magnitude in the climatological mean. Most of the models capture the temporal variation of the CRE reasonably well, with the main differences between models coming from the variation in amplitude. In the extra-tropics, most models fail to correctly represent both the amplitude and time variation of the CRE of congestus, frontal and stratocumulus regimes. The annual mean climatology of the CRE and its amplitude in the seasonal variation are both underestimated for the anvil regime in the tropics, the cirrus regime and the congestus regime in the extra-tropics. The models in this study that best capture the seasonal variation of the cloud regimes tend to have higher climate sensitivities.

Collaboration


Dive into the Mark A. Ringer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tsuyoshi Koshiro

Japan Meteorological Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hideaki Kawai

Japan Meteorological Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. M. Volodin

Russian Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge