Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Keith D. Williams is active.

Publication


Featured researches published by Keith D. Williams.


Geoscientific Model Development Discussions | 2011

The Met Office Unified Model Global Atmosphere 6.0/6.1 and JULES Global Land 6.0/6.1 configurations

D. N. Walters; M. J. Best; A. C. Bushell; D. Copsey; John M. Edwards; Pete Falloon; Chris Harris; A. P. Lock; James Manners; Cyril J. Morcrette; Malcolm J. Roberts; R. A. Stratton; S. Webster; J. M. Wilkinson; M. R. Willett; I. A. Boutle; P. D. Earnshaw; Peter G. Hill; C. MacLachlan; G. M. Martin; W. Moufouma-Okia; M. D. Palmer; Jon Petch; G. G. Rooney; Adam A. Scaife; Keith D. Williams

We describe Global Atmosphere 6.0 and Global Land 6.0 (GA6.0/GL6.0): the latest science configurations of the Met Office Unified Model and JULES (Joint UK Land Environment Simulator) land surface model developed for use across all timescales. Global Atmosphere 6.0 includes the ENDGame (Even Newer Dynamics for General atmospheric modelling of the environment) dynamical core, which significantly increases mid-latitude variability improving a known model bias. Alongside developments of the model’s physical parametrisations, ENDGame also increases variability in the tropics, which leads to an improved representation of tropical cyclones and other tropical phenomena. Further developments of the atmospheric and land surface parametrisations improve other aspects of model performance, including the forecasting of surface weather phenomena. We also describe GA6.1/GL6.1, which includes a small number of long-standing differences from our main trunk configurations that we continue to require for operational global weather prediction. Since July 2014, GA6.1/GL6.1 has been used by the Met Office for operational global numerical weather prediction, whilst GA6.0/GL6.0 was implemented in its remaining global prediction systems over the following year. Copyright statement. The works published in this journal are distributed under the Creative Commons Attribution 3.0 License. This license does not affect the Crown copyright work, which is re-usable under the Open Government Licence (OGL). The Creative Commons Attribution 3.0 License and the OGL are interoperable and do not conflict with, reduce or limit each other.


Journal of Climate | 2014

Origins of the solar radiation biases over the Southern Ocean in CFMIP2 models

Alejandro Bodas-Salcedo; Keith D. Williams; Mark A. Ringer; I. Beau; Jason N. S. Cole; Jean-Louis Dufresne; Tsuyoshi Koshiro; Bjorn Stevens; Zhili Wang; Tokuta Yokohata

AbstractCurrent climate models generally reflect too little solar radiation over the Southern Ocean, which may be the leading cause of the prevalent sea surface temperature biases in climate models. The authors study the role of clouds on the radiation biases in atmosphere-only simulations of the Cloud Feedback Model Intercomparison Project phase 2 (CFMIP2), as clouds have a leading role in controlling the solar radiation absorbed at those latitudes. The authors composite daily data around cyclone centers in the latitude band between 40° and 70°S during the summer. They use cloud property estimates from satellite to classify clouds into different regimes, which allow them to relate the cloud regimes and their associated radiative biases to the meteorological conditions in which they occur. The cloud regimes are defined using cloud properties retrieved using passive sensors and may suffer from the errors associated with this type of retrievals. The authors use information from the Cloud–Aerosol Lidar and I...


Journal of Climate | 2008

Time Variation of Effective Climate Sensitivity in GCMs

Keith D. Williams; William Ingram; Jonathan M. Gregory

Abstract Effective climate sensitivity is often assumed to be constant (if uncertain), but some previous studies of general circulation model (GCM) simulations have found it varying as the simulation progresses. This complicates the fitting of simple models to such simulations, as well as having implications for the estimation of climate sensitivity from observations. This study examines the evolution of the feedbacks determining the climate sensitivity in GCMs submitted to the Coupled Model Intercomparison Project. Apparent centennial-time-scale variations of effective climate sensitivity during stabilization to a forcing can be considered an artifact of using conventional forcings, which only allow for instantaneous effects and stratospheric adjustment. If the forcing is adjusted for processes occurring on time scales that are short compared to the climate stabilization time scale, then there is little centennial-time-scale evolution of effective climate sensitivity in any of the GCMs. Here it is sugges...


Journal of Climate | 2012

The Surface Downwelling Solar Radiation Surplus over the Southern Ocean in the Met Office Model: The Role of Midlatitude Cyclone Clouds

Alejandro Bodas-Salcedo; Keith D. Williams; P. R. Field; A. P. Lock

AbstractThe authors study the role of clouds in the persistent bias of surface downwelling shortwave radiation (SDSR) in the Southern Ocean in the atmosphere-only version of the Met Office model. The reduction of this bias in the atmosphere-only version is important to minimize sea surface temperature biases when the atmosphere model is coupled to a dynamic ocean. The authors use cloud properties and radiative fluxes estimates from the International Satellite Cloud Climatology Project (ISCCP) and apply a clustering technique to classify clouds into different regimes over the Southern Ocean. Then, they composite the cloud regimes around cyclone centers, which allows them to study the role of each cloud regime in a mean composite cyclone. Low- and midlevel clouds in the cold-air sector of the cyclones are responsible for most of the bias. Based on this analysis, the authors develop and test a new diagnosis of shear-dominated boundary layers. This change improves the simulation of the SDSR through a better s...


Journal of Climate | 2014

On the Correspondence between Mean Forecast Errors and Climate Errors in CMIP5 Models

H.-Y. Ma; Shaocheng Xie; S. A. Klein; Keith D. Williams; James S. Boyle; Sandrine Bony; H. Douville; S. Fermepin; Brian Medeiros; S. Tyteca; Masahiro Watanabe; David L. Williamson

AbstractThe present study examines the correspondence between short- and long-term systematic errors in five atmospheric models by comparing the 16 five-day hindcast ensembles from the Transpose Atmospheric Model Intercomparison Project II (Transpose-AMIP II) for July–August 2009 (short term) to the climate simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5) and AMIP for the June–August mean conditions of the years of 1979–2008 (long term). Because the short-term hindcasts were conducted with identical climate models used in the CMIP5/AMIP simulations, one can diagnose over what time scale systematic errors in these climate simulations develop, thus yielding insights into their origin through a seamless modeling approach.The analysis suggests that most systematic errors of precipitation, clouds, and radiation processes in the long-term climate runs are present by day 5 in ensemble average hindcasts in all models. Errors typically saturate after few days of hindcasts with amplitud...


Journal of Climate | 2010

Structural Similarities and Differences in Climate Responses to CO2 Increase between Two Perturbed Physics Ensembles

Tokuta Yokohata; Mark J. Webb; Matthew D. Collins; Keith D. Williams; Masakazu Yoshimori; J. C. Hargreaves; James D. Annan

Abstract The equilibrium climate sensitivity (ECS) of the two perturbed physics ensembles (PPE) generated using structurally different GCMs, Model for Interdisciplinary Research on Climate (MIROC3.2) and the Third Hadley Centre Atmospheric Model with slab ocean (HadSM3), is investigated. A method to quantify the shortwave (SW) cloud feedback by clouds with different cloud-top pressure is developed. It is found that the difference in the ensemble means of the ECS between the two ensembles is mainly caused by differences in the SW low-level cloud feedback. The ensemble mean SW cloud feedback and ECS of the MIROC3.2 ensemble is larger than that of the HadSM3 ensemble. This is likely related to the 1XCO2 low-level cloud albedo of the former being larger than that of the latter. It is also found that the largest contribution to the within-ensemble variation of ECS comes from the SW low-level cloud feedback in both ensembles. The mechanism that causes the within-ensemble variation is different between the two e...


Journal of Climate | 2016

Large contribution of supercooled liquid clouds to the solar radiation budget of the Southern Ocean

Alejandro Bodas-Salcedo; Peter G. Hill; Kalli Furtado; Keith D. Williams; P. R. Field; James Manners; Patrick Hyder; S. Kato

The Southern Ocean is a critical region for global climate, yet large cloud and solar radiation biases over the Southern Ocean are a long-standing problem in climate models and are poorly understood, leading to biases in simulated sea surface temperatures. This study shows that supercooled liquid clouds are central to understanding and simulating the Southern Ocean environment. A combination of satellite observational data and detailed radiative transfer calculations is used to quantify the impact of cloud phase and cloud vertical structure on the reflected solar radiation in the Southern Hemisphere summer. It is found that clouds with supercooled liquid tops dominate the population of liquid clouds. The observations show that clouds with supercooled liquid tops contribute between 27% and 38% to the total reflected solar radiation between 40° and 70°S, and climate models are found to poorly simulate these clouds. The results quantify the importance of supercooled liquid clouds in the Southern Ocean environment and highlight the need to improve understanding of the physical processes that control these clouds in order to improve their simulation in numerical models. This is not only important for improving the simulation of present-day climate and climate variability, but also relevant for increasing confidence in climate feedback processes and future climate projections.


Climate Dynamics | 2013

Quantitative evaluation of the seasonal variations in climate model cloud regimes

Yoko Tsushima; Mark A. Ringer; Mark J. Webb; Keith D. Williams

An extended cloud-clustering method to assess the seasonal variation of clouds is applied to five CMIP5 models. The seasonal variation of the total cloud radiative effect (CRE) is dominated by variations in the relative frequency of occurrence of the different cloud regimes. Seasonal variations of the CRE within the individual regimes contribute much less. This is the case for both observations, models and model errors. The error in the seasonal variation of cloud regimes, and its breakdown into mean amplitude and time varying components, are quantified with a new metric. The seasonal variation of the CRE of the cloud regimes is relatively well simulated by the models in the tropics, but less well in the extra-tropics. The stratocumulus regime has the largest seasonal variation of shortwave CRE in the tropics, despite having a small magnitude in the climatological mean. Most of the models capture the temporal variation of the CRE reasonably well, with the main differences between models coming from the variation in amplitude. In the extra-tropics, most models fail to correctly represent both the amplitude and time variation of the CRE of congestus, frontal and stratocumulus regimes. The annual mean climatology of the CRE and its amplitude in the seasonal variation are both underestimated for the anvil regime in the tropics, the cirrus regime and the congestus regime in the extra-tropics. The models in this study that best capture the seasonal variation of the cloud regimes tend to have higher climate sensitivities.


Journal of Climate | 2015

Processes Controlling Tropical Tropopause Temperature and Stratospheric Water Vapor in Climate Models

Steven C. Hardiman; Ian A. Boutle; Andrew C. Bushell; Neal Butchart; M. J. P. Cullen; P. R. Field; Kalli Furtado; James Manners; S. F. Milton; Cyril J. Morcrette; Fiona M. O’Connor; Ben Shipway; Christopher W. Smith; D. N. Walters; Martin Willett; Keith D. Williams; Nigel Wood; N. Luke Abraham; J. Keeble; Amanda C. Maycock; John Thuburn; Matthew T. Woodhouse

A warm bias in tropical tropopause temperature is found in the Met Office Unified Model (MetUM), in common with most models from phase 5 of CMIP (CMIP5). Key dynamical, microphysical, and radiative processes influencing the tropical tropopause temperature and lower-stratospheric water vapor concentrations in climate models are investigated using the MetUM. A series of sensitivity experiments are run to separate the effects of vertical advection, ice optical and microphysical properties, convection, cirrus clouds, and atmospheric composition on simulated tropopause temperature and lower-stratospheric water vapor concentrations in the tropics. The numerical accuracy of the vertical advection, determined in the MetUM by the choice of interpolation and conservation schemes used, is found to be particularly important. Microphysical and radiative processes are found to influence stratospheric water vapor both through modifying the tropical tropopause temperature and through modifying upper-tropospheric water vapor concentrations, allowing more water vapor to be advected into the stratosphere. The representation of any of the processes discussed can act to significantly reduce biases in tropical tropopause temperature and stratospheric water vapor in a physical way, thereby improving climate simulations.


Climate Dynamics | 2016

Robustness, uncertainties, and emergent constraints in the radiative responses of stratocumulus cloud regimes to future warming

Yoko Tsushima; Mark A. Ringer; Tsuyoshi Koshiro; Hideaki Kawai; Romain Roehrig; Jason N. S. Cole; Masahiro Watanabe; Tokuta Yokohata; Alejandro Bodas-Salcedo; Keith D. Williams; Mark J. Webb

Future responses of cloud regimes are analyzed for five CMIP5 models forced with observed SSTs and subject to a patterned SST perturbation. Correlations between cloud properties in the control climate and changes in the warmer climate are investigated for each of a set of cloud regimes defined using a clustering methodology. The only significant (negative) correlation found is in the in-regime net cloud radiative effect for the stratocumulus regime. All models overestimate the in-regime albedo of the stratocumulus regime. Reasons for this bias and its relevance to the future response are investigated. A detailed evaluation of the models’ daily-mean contributions to the albedo from stratocumulus clouds with different cloud cover fractions reveals that all models systematically underestimate the relative occurrence of overcast cases but overestimate those of broken clouds. In the warmer climate the relative occurrence of overcast cases tends to decrease while that of broken clouds increases. This suggests a decrease in the climatological in-regime albedo with increasing temperature (a positive feedback); this is opposite to the feedback suggested by the analysis of the bulk in-regime albedo. Furthermore we find that the inter-model difference in the sign of the in-cloud albedo feedback is consistent with the difference in sign of the in-cloud liquid water path response, and there is a strong positive correlation between the in-regime liquid water path in the control climate and its response to warming. We therefore conclude that further breakdown of the in-regime properties into cloud cover and in-cloud properties is necessary to better understand the behavior of the stratocumulus regime. Since cloud water is a physical property and is independent of a model’s radiative assumptions, it could potentially provide a useful emergent constraint on cloud feedback.

Collaboration


Dive into the Keith D. Williams's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge