Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark A. Spencer is active.

Publication


Featured researches published by Mark A. Spencer.


Journal of Anatomy | 2011

In vivo bone strain and finite-element modeling of the craniofacial haft in catarrhine primates.

Callum F. Ross; Michael A. Berthaume; Paul C. Dechow; Jose Iriarte-Diaz; Laura B. Porro; Brian G. Richmond; Mark A. Spencer; David S. Strait

Hypotheses regarding patterns of stress, strain and deformation in the craniofacial skeleton are central to adaptive explanations for the evolution of primate craniofacial form. The complexity of craniofacial skeletal morphology makes it difficult to evaluate these hypotheses with in vivo bone strain data. In this paper, new in vivo bone strain data from the intraorbital surfaces of the supraorbital torus, postorbital bar and postorbital septum, the anterior surface of the postorbital bar, and the anterior root of the zygoma are combined with published data from the supraorbital region and zygomatic arch to evaluate the validity of a finite‐element model (FEM) of a macaque cranium during mastication. The behavior of this model is then used to test hypotheses regarding the overall deformation regime in the craniofacial haft of macaques. This FEM constitutes a hypothesis regarding deformation of the facial skeleton during mastication. A simplified verbal description of the deformation regime in the macaque FEM is as follows. Inferior bending and twisting of the zygomatic arches about a rostrocaudal axis exerts inferolaterally directed tensile forces on the lateral orbital wall, bending the wall and the supraorbital torus in frontal planes and bending and shearing the infraorbital region and anterior zygoma root in frontal planes. Similar deformation regimes also characterize the crania of Homo and Gorilla under in vitro loading conditions and may be shared among extant catarrhines. Relatively high strain magnitudes in the anterior root of the zygoma suggest that the morphology of this region may be important for resisting forces generated during feeding.


Anatomical Record-advances in Integrative Anatomy and Evolutionary Biology | 2010

The Structural Rigidity of the Cranium of Australopithecus africanus: Implications for Diet, Dietary Adaptations, and the Allometry of Feeding Biomechanics

David S. Strait; Ian R. Grosse; Paul C. Dechow; Amanda Smith; Qian Wang; Gerhard W. Weber; Simon Neubauer; Dennis E. Slice; Janine Chalk; Brian G. Richmond; Peter W. Lucas; Mark A. Spencer; Caitlin Schrein; Barth W. Wright; Craig Byron; Callum F. Ross

Australopithecus africanus is an early hominin (i.e., human relative) believed to exhibit stress‐reducing adaptations in its craniofacial skeleton that may be related to the consumption of resistant food items using its premolar teeth. Finite element analyses simulating molar and premolar biting were used to test the hypothesis that the cranium of A. africanus is structurally more rigid than that of Macaca fascicularis, an Old World monkey that lacks derived australopith facial features. Previously generated finite element models of crania of these species were subjected to isometrically scaled loads, permitting a direct comparison of strain magnitudes. Moreover, strain energy (SE) in the models was compared after results were scaled to account for differences in bone volume and muscle forces. Results indicate that strains in certain skeletal regions below the orbits are higher in M. fascicularis than in A. africanus. Moreover, although premolar bites produce von Mises strains in the rostrum that are elevated relative to those produced by molar biting in both species, rostral strains are much higher in the macaque than in the australopith. These data suggest that at least the midface of A. africanus is more rigid than that of M. fascicularis. Comparisons of SE reveal that the A. africanus cranium is, overall, more rigid than that of M. fascicularis during premolar biting. This is consistent with the hypothesis that this hominin may have periodically consumed large, hard food items. However, the SE data suggest that the A. africanus cranium is marginally less rigid than that of the macaque during molar biting. It is hypothesized that the SE results are being influenced by the allometric scaling of cranial cortical bone thickness. Anat Rec, 293:583–593, 2010.


American Journal of Physical Anthropology | 2013

Viewpoints: Diet and Dietary Adaptations in Early Hominins: The Hard Food Perspective

David S. Strait; Paul J. Constantino; Peter W. Lucas; Brian G. Richmond; Mark A. Spencer; Paul C. Dechow; Callum F. Ross; Ian R. Grosse; Barth W. Wright; Gerhard W. Weber; Qian Wang; Craig Byron; Dennis E. Slice; Janine Chalk; Amanda Smith; Leslie C. Smith; Sarah Wood; Michael A. Berthaume; Stefano Benazzi; Christine Dzialo; Kelli Tamvada; Justin A. Ledogar

Recent biomechanical analyses examining the feeding adaptations of early hominins have yielded results consistent with the hypothesis that hard foods exerted a selection pressure that influenced the evolution of australopith morphology. However, this hypothesis appears inconsistent with recent reconstructions of early hominin diet based on dental microwear and stable isotopes. Thus, it is likely that either the diets of some australopiths included a high proportion of foods these taxa were poorly adapted to consume (i.e., foods that they would not have processed efficiently), or that aspects of what we thought we knew about the functional morphology of teeth must be wrong. Evaluation of these possibilities requires a recognition that analyses based on microwear, isotopes, finite element modeling, and enamel chips and cracks each test different types of hypotheses and allow different types of inferences. Microwear and isotopic analyses are best suited to reconstructing broad dietary patterns, but are limited in their ability to falsify specific hypotheses about morphological adaptation. Conversely, finite element analysis is a tool for evaluating the mechanical basis of form-function relationships, but says little about the frequency with which specific behaviors were performed or the particular types of food that were consumed. Enamel chip and crack analyses are means of both reconstructing diet and examining biomechanics. We suggest that current evidence is consistent with the hypothesis that certain derived australopith traits are adaptations for consuming hard foods, but that australopiths had generalized diets that could include high proportions of foods that were both compliant and tough.


Anatomical Record-advances in Integrative Anatomy and Evolutionary Biology | 2015

The Feeding Biomechanics and Dietary Ecology of Paranthropus boisei

Amanda Smith; Stefano Benazzi; Justin A. Ledogar; Kelli Tamvada; Leslie C. Smith; Gerhard W. Weber; Mark A. Spencer; Peter W. Lucas; Shaji Michael; Ali Shekeban; Khaled J. Al-Fadhalah; Abdulwahab S. Almusallam; Paul C. Dechow; Ian R. Grosse; Callum F. Ross; Richard H. Madden; Brian G. Richmond; Barth W. Wright; Qian Wang; Craig Byron; Dennis E. Slice; Sarah Wood; Christine Dzialo; Michael A. Berthaume; Adam van Casteren; David S. Strait

The African Plio‐Pleistocene hominins known as australopiths evolved derived craniodental features frequently interpreted as adaptations for feeding on either hard, or compliant/tough foods. Among australopiths, Paranthropus boisei is the most robust form, exhibiting traits traditionally hypothesized to produce high bite forces efficiently and strengthen the face against feeding stresses. However, recent mechanical analyses imply that P. boisei may not have been an efficient producer of bite force and that robust morphology in primates is not necessarily strong. Here we use an engineering method, finite element analysis, to show that the facial skeleton of P. boisei is structurally strong, exhibits a strain pattern different from that in chimpanzees (Pan troglodytes) and Australopithecus africanus, and efficiently produces high bite force. It has been suggested that P. boisei consumed a diet of compliant/tough foods like grass blades and sedge pith. However, the blunt occlusal topography of this and other species suggests that australopiths are adapted to consume hard foods, perhaps including grass and sedge seeds. A consideration of evolutionary trends in morphology relating to feeding mechanics suggests that food processing behaviors in gracile australopiths evidently were disrupted by environmental change, perhaps contributing to the eventual evolution of Homo and Paranthropus. Anat Rec, 298:145–167, 2015.


American Journal of Physical Anthropology | 2011

A Finite Element Analysis of Masticatory Stress Hypotheses

Janine Chalk; Brian G. Richmond; Callum F. Ross; David S. Strait; Barth W. Wright; Mark A. Spencer; Qian Wang; Paul C. Dechow

Understanding how the skull transmits and dissipates forces during feeding provides insights into the selective pressures that may have driven the evolution of primate skull morphology. Traditionally, researchers have interpreted masticatory biomechanics in terms of simple global loading regimes applied to simple shapes (i.e., bending in sagittal and frontal planes, dorsoventral shear, and torsion of beams and cylinders). This study uses finite element analysis to examine the extent to which these geometric models provide accurate strain predictions in the face and evaluate whether simple global loading regimes predict strains that approximate the craniofacial deformation pattern observed during mastication. Loading regimes, including those simulating peak loads during molar chewing and those approximating the global loading regimes, were applied to a previously validated finite element model (FEM) of a macaque (Macaca fascicularis) skull, and the resulting strain patterns were compared. When simple global loading regimes are applied to the FEM, the resulting strains do not match those predicted by simple geometric models, suggesting that these models fail to generate accurate predictions of facial strain. Of the four loading regimes tested, bending in the frontal plane most closely approximates strain patterns in the circumorbital region and lateral face, apparently due to masseter muscle forces acting on the zygomatic arches. However, these results indicate that no single simple global loading regime satisfactorily accounts for the strain pattern found in the validated FEM. Instead, we propose that FE models replace simple cranial models when interpreting bone strain data and formulating hypotheses about craniofacial biomechanics.


Archive | 2008

Craniofacial Strain Patterns During Premolar Loading: Implications for Human Evolution

David S. Strait; Barth W. Wright; Brian G. Richmond; Callum F. Ross; Paul C. Dechow; Mark A. Spencer; Qian Wang

9.


Nature Communications | 2016

Mechanical evidence that Australopithecus sediba was limited in its ability to eat hard foods

Justin A. Ledogar; Amanda Smith; Stefano Benazzi; Gerhard W. Weber; Mark A. Spencer; Keely B. Carlson; Kieran P. McNulty; Paul C. Dechow; Ian R. Grosse; Callum F. Ross; Brian G. Richmond; Barth W. Wright; Qian Wang; Craig Byron; Kristian J. Carlson; Darryl J. de Ruiter; Lee R. Berger; Kelli Tamvada; Leslie C. Pryor; Michael A. Berthaume; David S. Strait

Australopithecus sediba has been hypothesized to be a close relative of the genus Homo. Here we show that MH1, the type specimen of A. sediba, was not optimized to produce high molar bite force and appears to have been limited in its ability to consume foods that were mechanically challenging to eat. Dental microwear data have previously been interpreted as indicating that A. sediba consumed hard foods, so our findings illustrate that mechanical data are essential if one aims to reconstruct a relatively complete picture of feeding adaptations in extinct hominins. An implication of our study is that the key to understanding the origin of Homo lies in understanding how environmental changes disrupted gracile australopith niches. Resulting selection pressures led to changes in diet and dietary adaption that set the stage for the emergence of our genus.


Anatomical Record-advances in Integrative Anatomy and Evolutionary Biology | 2015

Biomechanical Implications of Intraspecific Shape Variation in Chimpanzee Crania: Moving Toward an Integration of Geometric Morphometrics and Finite Element Analysis

Amanda Smith; Stefano Benazzi; Justin A. Ledogar; Kelli Tamvada; Leslie C. Smith; Gerhard W. Weber; Mark A. Spencer; Paul C. Dechow; Ian R. Grosse; Callum F. Ross; Brian G. Richmond; Barth W. Wright; Qian Wang; Craig Byron; Dennis E. Slice; David S. Strait

In a broad range of evolutionary studies, an understanding of intraspecific variation is needed in order to contextualize and interpret the meaning of variation between species. However, mechanical analyses of primate crania using experimental or modeling methods typically encounter logistical constraints that force them to rely on data gathered from only one or a few individuals. This results in a lack of knowledge concerning the mechanical significance of intraspecific shape variation that limits our ability to infer the significance of interspecific differences. This study uses geometric morphometric methods (GM) and finite element analysis (FEA) to examine the biomechanical implications of shape variation in chimpanzee crania, thereby providing a comparative context in which to interpret shape‐related mechanical variation between hominin species. Six finite element models (FEMs) of chimpanzee crania were constructed from CT scans following shape‐space Principal Component Analysis (PCA) of a matrix of 709 Procrustes coordinates (digitized onto 21 specimens) to identify the individuals at the extremes of the first three principal components. The FEMs were assigned the material properties of bone and were loaded and constrained to simulate maximal bites on the P3 and M2. Resulting strains indicate that intraspecific cranial variation in morphology is associated with quantitatively high levels of variation in strain magnitudes, but qualitatively little variation in the distribution of strain concentrations. Thus, interspecific comparisons should include considerations of the spatial patterning of strains rather than focus only on their magnitudes. Anat Rec, 298:122–144, 2015.


Archive | 2008

Surface Strain on Bone and Sutures in a Monkey Facial Skeleton: An In Vitro Approach and itsRelevance to Finite Element Analysis

Qian Wang; Paul C. Dechow; Barth W. Wright; Callum F. Ross; David S. Strait; Brian G. Richmond; Mark A. Spencer; Craig Byron

8.


Journal of Human Evolution | 2012

Microwear, mechanics and the feeding adaptations of Australopithecus africanus

David S. Strait; Gerhard W. Weber; Paul J. Constantino; Peter W. Lucas; Brian G. Richmond; Mark A. Spencer; Paul C. Dechow; Callum F. Ross; Ian R. Grosse; Barth W. Wright; Qian Wang; Craig Byron; Dennis E. Slice

Recent studies of dental microwear and craniofacial mechanics have yielded contradictory interpretations regarding the feeding ecology and adaptations of Australopithecus africanus. As part of this debate, the methods used in the mechanical studies have been criticized. In particular, it has been claimed that finite element analysis has been poorly applied to this research question. This paper responds to some of these mechanical criticisms, highlights limitations of dental microwear analysis, and identifies avenues of future research.

Collaboration


Dive into the Mark A. Spencer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Barth W. Wright

Kansas City University of Medicine and Biosciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian R. Grosse

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge