Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark A. Zondlo is active.

Publication


Featured researches published by Mark A. Zondlo.


Journal of Geophysical Research | 2005

Export efficiency of black carbon aerosol in continental outflow: Global implications

Rokjin J. Park; Daniel J. Jacob; Paul I. Palmer; Antony D. Clarke; Rodney J. Weber; Mark A. Zondlo; F. L. Eisele; Alan R. Bandy; Donald C. Thornton; Glen W. Sachse; Tami C. Bond

[1] We use aircraft observations of Asian outflow from the NASA Transport and Chemical Evolution over the Pacific (TRACE-P) mission over the NW Pacific in March-April 2001 to estimate the export efficiency of black carbon (BC) aerosol during lifting to the free troposphere, as limited by scavenging from the wet processes (warm conveyor belts and convection) associated with this lifting. Our estimate is based on the enhancement ratio of BC relative to CO in Asian outflow observed at different altitudes and is normalized to the enhancement ratio observed in boundary layer outflow (0-1 km). We similarly estimate export efficiencies of sulfur oxides (SO x = SO 2 (g) + fine SO 2- 4 ) and total inorganic nitrate (HNO T 3 = HNO 3 (g) + fine NO - 3 ) for comparison to BC. Normalized export efficiencies for BC are 0.63-0.74 at 2-4 km altitude and 0.27-0.38 at 4-6 km. Values at 2-4 km altitude are higher than for SO x (0.48-0.66) and HNO T 3 (0.29-0.62), implying that BC is scavenged in wet updrafts but not as efficiently as sulfate or nitrate. Simulation of the TRACE-P period with a global three-dimensional model (GEOS-CHEM) indicates that a model timescale of 1 ± 1 days for conversion of fresh hydrophobic to hydrophilic BC provides a successful fit to the export efficiencies observed in TRACE-P. The resulting mean atmospheric lifetime of BC is 5.8 ± 1.8 days, the global burden is 0.11 ± 0.03 Tg C, and the decrease in Arctic snow albedo due to BC deposition is 3.1 ± 2.5%.


Journal of Geophysical Research | 2004

Impacts of biomass burning in Southeast Asia on ozone and reactive nitrogen over the western Pacific in spring

Y. Kondo; Yu Morino; N. Takegawa; M. Koike; K. Kita; Yuzo Miyazaki; G. W. Sachse; S. A. Vay; M. Avery; F. Flocke; Andrew J. Weinheimer; F. L. Eisele; Mark A. Zondlo; Rodney J. Weber; Hanwant B. Singh; G. Chen; J. H. Crawford; D. R. Blake; Henry E. Fuelberg; Antony D. Clarke; Robert W. Talbot; S. T. Sandholm; Edward V. Browell; David G. Streets; Ben Liley

[1] Aircraft measurements of ozone (O3) and its precursors (reactive nitrogen, CO, nonmethane hydrocarbons) were made over the western Pacific during the Transport and Chemical Evolution Over the Pacific (TRACE-P) campaign, which was conducted during February–April 2001. Biomass burning activity was high over Southeast Asia (SEA) during this period (dry season), and convective activity over SEA frequently transported air from the boundary layer to the free troposphere, followed by eastward transport to the sampling region over the western Pacific south of 30� N. This data set allows for systematic investigations of the chemical and physical processes in the outflow from SEA. Methyl chloride (CH3Cl) and CO are chosen as primary and secondary tracers, respectively, to gauge the degree of the impact of emissions of trace species from biomass burning. Biomass burning is found to be a major source of reactive nitrogen (NOx, PAN, HNO3, and nitrate) and O3 in this region from correlations of these species with the tracers. Changes in the abundance of reactive nitrogen during upward transport are quantified from the altitude change of the slopes of the correlations of these species with CO. NOx decreased with altitude due to its oxidation to HNO3. On the other hand, PAN was conserved during transport from the lower to the middle troposphere, consistent with its low water solubility and chemical stability at low temperatures. Large losses of HNO3 and nitrate, which are highly water soluble, occurred in the free troposphere, most likely due to wet removal by precipitation. This has been shown to be the major pathway of NOy loss in the middle troposphere. Increases in the mixing ratios of O3 and its precursors due to biomass burning in SEA are estimated using the tracers. Enhancements of CO and total reactive nitrogen (NOy), which are directly emitted from biomass burning, were largest at 2–4 km. At this altitudetheincreasesinNOyandO3were810partspertrillionbyvolume(pptv)and26parts per billion by volume (ppbv) above their background values of 240 pptv and 31 ppbv, respectively. The slope of the O3-CO correlation in biomass burning plumes was similar to those observed in fire plumes in northern Australia, Africa, and Canada. The O3 production efficiency (OPE) derived from the O3-CO slope and NOx/CO emission ratio (ER) is shown to be positively correlated with the C2H4/NOx ER, indicating that the C2H4/NOx ER is a critical parameter in determining the OPE. Comparison of the net O3 flux across the western Pacific region and total O3 production due to biomass burning in


Proceedings of the National Academy of Sciences of the United States of America | 2015

Active and widespread halogen chemistry in the tropical and subtropical free troposphere

Siyuan Wang; Johan A. Schmidt; Sunil Baidar; Sean Coburn; B. Dix; Theodore K. Koenig; Eric C. Apel; Dene Bowdalo; Teresa L. Campos; Ed Eloranta; M. J. Evans; Joshua Digangi; Mark A. Zondlo; Ru Shan Gao; Julie Haggerty; Samuel R. Hall; Rebecca S. Hornbrook; Daniel J. Jacob; Bruce Morley; Bradley Pierce; M. Reeves; Pavel Romashkin; Arnout ter Schure; R. Volkamer

Significance Our measurements show that tropospheric halogen chemistry has a larger capacity to destroy O3 and oxidize atmospheric mercury than previously recognized. Halogen chemistry is currently missing in most global and climate models, and is effective at removing O3 at altitudes where intercontinental O3 transport occurs. It further helps explain the low O3 levels in preindustrial times. Public health concerns arise from bioaccumulation of the neurotoxin mercury in fish. Our results emphasize that bromine chemistry in the free troposphere oxidizes mercury at a faster rate, and makes water-soluble mercury available for scavenging by thunderstorms. Naturally occurring bromine in air aloft illustrates global interconnectedness between energy choices affecting mercury emissions in developing nations and mercury deposition in, e.g., Nevada, or the southeastern United States. Halogens in the troposphere are increasingly recognized as playing an important role for atmospheric chemistry, and possibly climate. Bromine and iodine react catalytically to destroy ozone (O3), oxidize mercury, and modify oxidative capacity that is relevant for the lifetime of greenhouse gases. Most of the tropospheric O3 and methane (CH4) loss occurs at tropical latitudes. Here we report simultaneous measurements of vertical profiles of bromine oxide (BrO) and iodine oxide (IO) in the tropical and subtropical free troposphere (10°N to 40°S), and show that these halogens are responsible for 34% of the column-integrated loss of tropospheric O3. The observed BrO concentrations increase strongly with altitude (∼3.4 pptv at 13.5 km), and are 2–4 times higher than predicted in the tropical free troposphere. BrO resembles model predictions more closely in stratospheric air. The largest model low bias is observed in the lower tropical transition layer (TTL) over the tropical eastern Pacific Ocean, and may reflect a missing inorganic bromine source supplying an additional 2.5–6.4 pptv total inorganic bromine (Bry), or model overestimated Bry wet scavenging. Our results highlight the importance of heterogeneous chemistry on ice clouds, and imply an additional Bry source from the debromination of sea salt residue in the lower TTL. The observed levels of bromine oxidize mercury up to 3.5 times faster than models predict, possibly increasing mercury deposition to the ocean. The halogen-catalyzed loss of tropospheric O3 needs to be considered when estimating past and future ozone radiative effects.


Remote Sensing | 2012

Low Power Greenhouse Gas Sensors for Unmanned Aerial Vehicles

Amir Khan; David Schaefer; Lei Tao; David J. Miller; Kang Sun; Mark A. Zondlo; William A. Harrison; Bryan Roscoe; David J. Lary

Abstract: We demonstrate compact, low power, lightweight laser-based sensors for measuring trace gas species in the atmosphere designed specifically for electronic unmanned aerial vehicle (UAV) platforms. The sensors utilize non-intrusive optical sensing techniques to measure atmospheric greenhouse gas concentrations with unprecedented vertical and horizontal resolution (~1 m) within the planetary boundary layer. The sensors are developed to measure greenhouse gas species including carbon dioxide, water vapor and methane in the atmosphere. Key innovations are the coupling of very low power vertical cavity surface emitting lasers (VCSELs) to low power drive electronics and sensitive multi-harmonic wavelength modulation spectroscopic techniques. The overall mass of each sensor is between 1–2 kg including batteries and each one consumes less than 2 W of electrical power. In the initial field testing, the sensors flew successfully onboard a T-Rex Align 700E robotic helicopter and showed a precision of 1% or less for all three trace gas species. The sensors are battery operated and capable of fully automated operation for long periods of time in diverse sensing environments. Laser-based trace gas sensors for UAVs allow for high spatial mapping of local greenhouse gas


Journal of Geophysical Research | 2003

Peroxy radical behavior during the Transport and Chemical Evolution over the Pacific (TRACE‐P) campaign as measured aboard the NASA P‐3B aircraft

C. A. Cantrell; Gavin D. Edwards; S. Stephens; R. L. Mauldin; Mark A. Zondlo; E. Kosciuch; F. L. Eisele; Richard E. Shetter; Barry Lefer; Samuel R. Hall; F. Flocke; Andrew J. Weinheimer; Alan Fried; Eric C. Apel; Yutaka Kondo; D. R. Blake; Nicola J. Blake; Isobel J. Simpson; Alan R. Bandy; Donald C. Thornton; Brian G. Heikes; Hanwant B. Singh; William H. Brune; H. Harder; M. Martinez-Harder; M. Avery; S. A. Vay; J. Barrick; G. W. Sachse; J. R. Olsen

[1] Peroxy radical concentrations were measured aboard the NASA P-3B aircraft during the Transport and Chemical Evolution over the Pacific (TRACE-P) campaign in the spring of 2001 and varied in ways that depended on radical production rates and reactive nitrogen concentrations. Measurements of HO2 ,H O2 +R O2, and OH during this study allowed calculation of radical ratios, examination of functional relationships of these ratios on controlling variables, and comparison with numerical model estimations. Radical production terms show changes in relative contributions at low, middle, and high total production rates that are understandable in terms of systematic variations in the controlling components (trace gas concentrations and photolysis rate coefficients). Ozone tendency calculations indicate net ozone production in the western Pacific basin because the concentrations of critical precursor trace gases (e.g., NOx, hydrocarbons) are highest there. The dependence of ozone tendency follows the concentration of NO systematically. Peroxy radical levels on the two aircraft (HO2 +R O2 on the P-3B and HO2 on the DC-8) during two relatively short prescribed intercomparison periods were in good agreement in one instance and poorer in another given reasonable assumptions about the apportioning of radicals between HO2 and RO2. Recommended changes to CH2O photolysis quantum yields, HO2 self reaction, and O( 1 D) quenching kinetics lead to small changes (<5%) in calculated peroxy radical levels for TRACE-P conditions. There is evidence from this campaign that peroxy radicals are lost by interaction with aerosols and cloud droplets. INDEX TERMS: 0317 Atmospheric Composition and Structure: Chemical kinetic and photochemical properties; 0322 Atmospheric Composition and Structure: Constituent sources and sinks; 0365 Atmospheric Composition and Structure: Troposphere—composition and chemistry; 0368 Atmospheric Composition and Structure: Troposphere—constituent transport and chemistry; KEYWORDS: photochemistry, peroxy radicals, ozone


Journal of Geophysical Research | 2014

Convective transport of water vapor into the lower stratosphere observed during double‐tropopause events

Cameron R. Homeyer; Laura L. Pan; Samuel W. Dorsi; Linnea M. Avallone; Andrew J. Weinheimer; Anthony S. O'Brien; Joshua Digangi; Mark A. Zondlo; Thomas B. Ryerson; Glenn S. Diskin; Teresa L. Campos

We present in situ observations of convectively injected water vapor in the lower stratosphere from instruments aboard two aircraft operated during the Deep Convective Clouds and Chemistry experiment. Water vapor mixing ratios in the injected air are observed to be 60–225 ppmv at altitudes 1–2 km above the tropopause (350–370 K potential temperature), well above observed background mixing ratios of 5–10 ppmv in the lower stratosphere. Radar observations of the responsible convective systems show deep overshooting at altitudes up to 4 km above the lapse rate tropopause and above the flight ceilings of the aircraft. Backward trajectories from the in situ observations show that convectively injected water vapor is observed from three distinct types of systems: isolated convection, a convective line, and a leading line-trailing stratiform mesoscale convective system. Significant transport of additional tropospheric or boundary layer trace gases is observed only for the leading line-trailing stratiform case. In addition, all observations of convective injection are found to occur within large-scale double-tropopause events from poleward Rossby wave breaking. Based on this relationship, we present a hypothesis on the role of the large-scale lower stratosphere during convective overshooting. In particular, the reduced lower stratosphere stability associated with double-tropopause environments may facilitate deeper levels of overshooting and convective injection.


Optics Express | 2012

Compact and portable open-path sensor for simultaneous measurements of atmospheric N 2 O and CO using a quantum cascade laser

Lei Tao; Kang Sun; M. Amir Khan; David J. Miller; Mark A. Zondlo

A compact and portable open-path sensor for simultaneous detection of atmospheric N(2)O and CO has been developed with a 4.5 μm quantum cascade laser (QCL). An in-line acetylene (C(2)H(2)) gas reference cell allows for continuous monitoring of the sensor drift and calibration in rapidly changing field environments and thereby allows for open-path detection at high precision and stability. Wavelength modulation spectroscopy (WMS) is used to detect simultaneously both the second and fourth harmonic absorption spectra with an optimized dual modulation amplitude scheme. Multi-harmonic spectra containing atmospheric N(2)O, CO, and the reference C(2)H(2) signals are fit in real-time (10 Hz) by combining a software-based lock-in amplifier with a computationally fast numerical model for WMS. The sensor consumes ~50 W of power and has a mass of ~15 kg. Precision of 0.15 ppbv N(2)O and 0.36 ppbv CO at 10 Hz under laboratory conditions was demonstrated. The sensor has been deployed for extended periods in the field. Simultaneous N(2)O and CO measurements distinguished between natural and fossil fuel combustion sources of N(2)O, an important greenhouse gas with poorly quantified emissions in space and time.


Environmental Science & Technology | 2014

On-Road Ammonia Emissions Characterized by Mobile, Open-Path Measurements

Kang Sun; Lei Tao; David J. Miller; M. Amir Khan; Mark A. Zondlo

Ammonia (NH3) is a key precursor species to atmospheric fine particulate matter with strong implications for regional air quality and global climate change. NH3 from vehicles accounts for a significant fraction of total emissions of NH3 in urban areas. A mobile platform is developed to measure NH3, CO, and CO2 from the top of a passenger car. The mobile platform conducted 87 h of on-road measurements, covering 4500 km in New Jersey and California. The average on-road emission factor (EF) in CA is 0.49 ± 0.06 g NH3 per kg fuel and agrees with previous studies in CA (0.3-0.8 g/kg). The mean on-road NH3:CO emission ratio is 0.029 ± 0.005, and there is no systematic difference between NJ and CA. On-road NH3 EFs increase with road gradient by an enhancement of 53 mg/kg fuel per percentage of gradient. On-road NH3 EFs show higher values in both stop-and-go driving conditions and freeway speeds with a minimum near 70 km/h. Consistent with prior studies, the on-road emission ratios suggest a highly skewed distribution of NH3 emitters. Comparisons with existing NJ and CA on-road emission inventories indicate that there may be an underestimation of on-road NH3 emissions in both NJ and CA. We demonstrate that mobile, open-path measurements provide a unique tool to help quantitatively understand the on-road NH3 emissions in urban and suburban settings.


Environmental Science & Technology | 2017

Vehicle Emissions as an Important Urban Ammonia Source in the United States and China

Kang Sun; Lei Tao; David J. Miller; Da Pan; Levi M. Golston; Mark A. Zondlo; Robert J. Griffin; H. W. Wallace; Yu Jun Leong; M. Melissa Yang; Yan Zhang; Denise L. Mauzerall; Tong Zhu

Ammoniated aerosols are important for urban air quality, but emissions of the key precursor NH3 are not well quantified. Mobile laboratory observations are used to characterize fleet-integrated NH3 emissions in six cities in the U.S. and China. Vehicle NH3:CO2 emission ratios in the U.S. are similar between cities (0.33-0.40 ppbv/ppmv, 15% uncertainty) despite differences in fleet composition, climate, and fuel composition. While Beijing, China has a comparable emission ratio (0.36 ppbv/ppmv) to the U.S. cities, less developed Chinese cities show higher emission ratios (0.44 and 0.55 ppbv/ppmv). If the vehicle CO2 inventories are accurate, NH3 emissions from U.S. vehicles (0.26 ± 0.07 Tg/yr) are more than twice those of the National Emission Inventory (0.12 Tg/yr), while Chinese NH3 vehicle emissions (0.09 ± 0.02 Tg/yr) are similar to a bottom-up inventory. Vehicle NH3 emissions are greater than agricultural emissions in counties containing near half of the U.S. population and require reconsideration in urban air quality models due to their colocation with other aerosol precursors and the uncertainties regarding NH3 losses from upwind agricultural sources. Ammonia emissions in developing cities are especially important because of their high emission ratios and rapid motorizations.


Journal of Geophysical Research | 2016

A flexible and robust neural network IASI‐NH3 retrieval algorithm

Simon Whitburn; M. Van Damme; Lieven Clarisse; Sophie Bauduin; Colette L. Heald; Juliette Hadji-Lazaro; Daniel Hurtmans; Mark A. Zondlo; Cathy Clerbaux; Pierre-François Coheur

In this paper, we describe a new flexible and robust NH3 retrieval algorithm from measurements of the Infrared Atmospheric Sounding Interferometer (IASI). The method is based on the calculation of a spectral hyperspectral range index (HRI) and subsequent conversion to NH3 columns via a neural network. It is an extension of the method presented in Van Damme et al. (2014a) who used lookup tables (LUT) for the radiance-concentration conversion. The new method inherits the advantages of the LUT-based method while providing several significant improvements. These include the following: (1) Complete temperature and humidity vertical profiles can be accounted for. (2) Third-party NH3 vertical profile information can be used. (3) Reported positive biases of LUT retrieval are reduced, and finally (4) a full measurement uncertainty characterization is provided. A running theme in this study, related to item (2), is the importance of the assumed vertical NH3 profile. We demonstrate the advantages of allowing variable profile shapes in the retrieval. As an example, we analyze how the retrievals change when all NH3 is assumed to be confined to the boundary layer. We analyze different averaging procedures in use for NH3 in the literature, introduced to cope with the variable measurement sensitivity and derive global averaged distributions for the year 2013. A comparison with a GEOS-Chem modeled global distribution is also presented, showing a general good correspondence (within ±3 × 1015 molecules.cm−2) over most of the Northern Hemisphere. However, IASI finds mean columns about 1–1.5 × 1016 molecules.cm−2 (∼50–60%) lower than GEOS-Chem for India and the North China plain.

Collaboration


Dive into the Mark A. Zondlo's collaboration.

Top Co-Authors

Avatar

F. L. Eisele

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Kang Sun

Princeton University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lei Tao

Princeton University

View shared research outputs
Top Co-Authors

Avatar

D. R. Blake

University of California

View shared research outputs
Top Co-Authors

Avatar

C. A. Cantrell

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Andrew J. Weinheimer

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Minghui Diao

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

E. Kosciuch

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge