Mark Andrake
Fox Chase Cancer Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mark Andrake.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Roshan J. Thapa; Shoko Nogusa; Peirong Chen; Jenny L. Maki; Anthony Lerro; Mark Andrake; Glenn F. Rall; Alexei Degterev; Siddharth Balachandran
Significance The interferons are small secreted proteins with powerful antiviral and cytotoxic properties. Here, we outline a signaling pathway activated by interferons that results in the precipitous necrotic death of susceptible cells. Interferon-induced necrosis proceeds via a novel, progressive mechanism that requires RNA transcription, as well as the sequential activity of three serine-threonine kinases: PKR, RIP1, and RIP3. This pronecrotic kinase cascade is normally held in check by FADD and caspases. As FADD can be disabled by phosphorylation during mitosis, our findings suggest the existence of a putative cell cycle-dependent checkpoint that licenses interferon-induced necrosis. Interferons (IFNs) are cytokines with powerful immunomodulatory and antiviral properties, but less is known about how they induce cell death. Here, we show that both type I (α/β) and type II (γ) IFNs induce precipitous receptor-interacting protein (RIP)1/RIP3 kinase-mediated necrosis when the adaptor protein Fas-associated death domain (FADD) is lost or disabled by phosphorylation, or when caspases (e.g., caspase 8) are inactivated. IFN-induced necrosis proceeds via progressive assembly of a RIP1–RIP3 “necrosome” complex that requires Jak1/STAT1-dependent transcription, but does not need the kinase activity of RIP1. Instead, IFNs transcriptionally activate the RNA-responsive protein kinase PKR, which then interacts with RIP1 to initiate necrosome formation and trigger necrosis. Although IFNs are powerful activators of necrosis when FADD is absent, these cytokines are likely not the dominant inducers of RIP kinase-driven embryonic lethality in FADD-deficient mice. We also identify phosphorylation on serine 191 as a mechanism that disables FADD and collaborates with caspase inactivation to allow IFN-activated necrosis. Collectively, these findings outline a mechanism of IFN-induced RIP kinase-dependent necrotic cell death and identify FADD and caspases as negative regulators of this process.
Journal of Biological Chemistry | 1996
Mark Andrake; Anna Marie Skalka
Retroviral integrase (IN) mediates retroviral DNA integration, a critical step in viral replication that ensures stable expression of proviral genes in the infected cell and perpetuation of the viral genome in all the host cell progeny. The IN protein is both necessary and sufficient for the integration of a linear DNA with viral end sequences into a target DNA in vitro (1, 2). The integration reaction is known to take place in two distinct steps (see Fig. 1). IN specifically recognizes sequences at both ends of newly synthesized viral DNA, most likely as a component of a large subviral preintegration complex. The first step in integration, a processing reaction, can take place in the cytoplasm of infected cells (3). This reaction produces site-specific cuts near the viral DNA 39-ends, adjacent to a conserved CA dinucleotide, removing (generally) two nucleotides and exposing new 39-hydroxyl ends. The second step, a joining reaction, is a concerted cleavage-ligation reaction (4), which produces a staggered cut in cellular DNA when the newly exposed 39-hydroxyls of the viral DNA ends attack the phosphate bonds at the cellular DNA cleavage site. The product is an intermediate in which the 39-ends of viral DNA are covalently linked to cellular DNA and the 59-ends of viral DNA are flanked by short gaps (5, 6). Repair of the gaps and completion of integration, which can be accomplished by cellular enzymes, produce a short direct repeat of host target DNA. The length of this repeat is characteristic for each virus. For example, HIV-1 proviruses are flanked by 5-base pair repeats and ASV by 6-base pair repeats. These features are likely to reflect subtle differences in the structure or multimeric organization of the two integrases. Details of the biochemistry of IN and its catalytic mechanism have been uncovered mainly through the use of in vitro, reconstructed systems, which employ purified enzymes and model DNA substrates that consist of short oligodeoxynucleotide duplexes (1, 2, 7, 8). Unlike several site-specific recombinases that utilize a protein-DNA covalent intermediate, the cleavage-ligation reaction is a direct transesterification. The in-line nucleophilic attack by the processed viral 39-hydroxyls on the phosphate bond of the target DNA occurs with chiral inversion when appropriate substrates are used for detection (4). It has recently been discovered that a similar, but intramolecular, transesterification is catalyzed by another eukaryotic recombinase complex (RAG1 and RAG2) in the early steps of V(D)J recombination of immunoglobulin genes (9). Retroviral integrases range from 270 to 350 amino acids in length. Various lines of evidence indicate that both ASV and HIV-1 IN function as multimers (minimally, dimers) in vitro (10–12). However, the number and arrangement of IN protomers in the active in vivo complex are still unknown. Deduced amino acid sequence alignments, limited proteolysis, site-directed mutagenesis studies, and complementation experiments (reviewed in Refs. 13 and 14) have revealed the presence of three distinct domains that form independent folding units within each monomer. The first two of these are highly conserved among retroviral and retrotransposon integrases (Fig. 2). Here we will review what is known about the structure of each domain and discuss current ideas concerning domain interactions and multimerization, as they relate to function.
Journal of Biological Chemistry | 1997
Grzegorz Bujacz; Jerry Alexandratos; Alexander Wlodawer; George Merkel; Mark Andrake; Richard A. Katz; Anna Marie Skalka
Retroviral integrases (INs) contain two known metal binding domains. The N-terminal domain includes a zinc finger motif and has been shown to bind Zn2+, whereas the central catalytic core domain includes a triad of acidic amino acids that bind Mn2+ or Mg2+, the metal cofactors required for enzymatic activity. The integration reaction occurs in two distinct steps; the first is a specific endonucleolytic cleavage step called “processing,” and the second is a polynucleotide transfer or “joining” step. Our previous results showed that the metal preference for in vitro activity of avian sarcoma virus IN is Mn2+ > Mg2+ and that a single cation of either metal is coordinated by two of the three critical active site residues (Asp-64 and Asp-121) in crystals of the isolated catalytic domain. Here, we report that Ca2+, Zn2+, and Cd2+ can also bind in the active site of the catalytic domain. Furthermore, two zinc and cadmium cations are bound at the active site, with all three residues of the active site triad (Asp-64, Asp-121, and Glu-157) contributing to their coordination. These results are consistent with a two-metal mechanism for catalysis by retroviral integrases. We also show that Zn2+ can serve as a cofactor for the endonucleolytic reactions catalyzed by either the full-length protein, a derivative lacking the N-terminal domain, or the isolated catalytic domain of avian sarcoma virus IN. However, polynucleotidyl transferase activities are severely impaired or undetectable in the presence of Zn2+. Thus, although the processing and joining steps of integrase employ a similar mechanism and the same active site triad, they can be clearly distinguished by their metal preferences.
European Urology | 2015
Elizabeth R. Plimack; Roland L. Dunbrack; Tim Brennan; Mark Andrake; Yan Zhou; Ilya G. Serebriiskii; Michael Slifker; Katherine Alpaugh; Essel Dulaimi; Norma Alonzo Palma; Jean H. Hoffman-Censits; Marijo Bilusic; Yu Ning Wong; Alexander Kutikov; Rosalia Viterbo; Richard E. Greenberg; David Y.T. Chen; Edouard J. Trabulsi; Roman Yelensky; David J. McConkey; Vincent A. Miller; Erica A. Golemis; Eric A. Ross
BACKGROUND Cisplatin-based neoadjuvant chemotherapy (NAC) before cystectomy is the standard of care for muscle-invasive bladder cancer (MIBC), with 25-50% of patients expected to achieve a pathologic response. Validated biomarkers predictive of response are currently lacking. OBJECTIVE To discover and validate biomarkers predictive of response to NAC for MIBC. DESIGN, SETTING, AND PARTICIPANTS Pretreatment MIBC samples prospectively collected from patients treated in two separate clinical trials of cisplatin-based NAC provided the discovery and validation sets. DNA from pretreatment tumor tissue was sequenced for all coding exons of 287 cancer-related genes and was analyzed for base substitutions, indels, copy number alterations, and selected rearrangements in a Clinical Laboratory Improvements Amendments-certified laboratory. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS The mean number of variants and variant status for each gene were correlated with response. Variant data from the discovery cohort were used to create a classification tree to discriminate responders from nonresponders. The resulting decision rule was then tested in the independent validation set. RESULTS AND LIMITATIONS Patients with a pathologic complete response had more alterations than those with residual tumor in both the discovery (p=0.024) and validation (p=0.018) sets. In the discovery set, alteration in one or more of the three DNA repair genes ATM, RB1, and FANCC predicted pathologic response (p<0.001; 87% sensitivity, 100% specificity) and better overall survival (p=0.007). This test remained predictive for pathologic response in the validation set (p=0.033), with a trend towards better overall survival (p=0.055). These results require further validation in additional sample sets. CONCLUSIONS Genomic alterations in the DNA repair-associated genes ATM, RB1, and FANCC predict response and clinical benefit after cisplatin-based chemotherapy for MIBC. The results suggest that defective DNA repair renders tumors sensitive to cisplatin. PATIENT SUMMARY Chemotherapy given before bladder removal (cystectomy) improves the chance of cure for some but not all patients with muscle-invasive bladder cancer. We found a set of genetic mutations that when present in tumor tissue predict benefit from neoadjuvant chemotherapy, suggesting that testing before chemotherapy may help in selecting patients for whom this approach is recommended.
Molecular and Cellular Biology | 2009
Gowrishankar Banumathy; Neeta Somaiah; Rugang Zhang; Yong Tang; Jason Hoffmann; Mark Andrake; Hugo Ceulemans; David C. Schultz; Ronen Marmorstein; Peter D. Adams
ABSTRACT Cellular senescence is an irreversible proliferation arrest, tumor suppression process and likely contributor to tissue aging. Senescence is often characterized by domains of facultative heterochromatin, called senescence-associated heterochromatin foci (SAHF), which repress expression of proliferation-promoting genes. Given its likely contribution to tumor suppression and tissue aging, it is essential to identify all components of the SAHF assembly pathway. Formation of SAHF in human cells is driven by a complex of histone chaperones, namely, HIRA and ASF1a. In yeast, the complex orthologous to HIRA/ASF1a contains two additional proteins, Hpc2p and Hir3p. Using a sophisticated approach to search for remote orthologs conserved in multiple species through evolution, we identified the HIRA-associated proteins, UBN1 and UBN2, as candidate human orthologs of Hpc2p. We show that the Hpc2-related domain of UBN1, UBN2, and Hpc2p is an evolutionarily conserved HIRA/Hir-binding domain, which directly interacts with the N-terminal WD repeats of HIRA/Hir. UBN1 binds to proliferation-promoting genes that are repressed by SAHF and associates with histone methyltransferase activity that methylates lysine 9 of histone H3, a site that is methylated in SAHF. UBN1 is indispensable for formation of SAHF. We conclude that UBN1 is an ortholog of yeast Hpc2p and a novel regulator of senescence.
Nature Communications | 2014
Xizhuo Wang; Youjun Wang; Eunan Hendron; Salvatore Mancarella; Mark Andrake; Brad S. Rothberg; Jonathan Soboloff; Donald L. Gill
STIM1 and STIM2 are widely expressed endoplasmic reticulum (ER) Ca(2+) sensor proteins able to translocate within the ER membrane to physically couple with and gate plasma membrane Orai Ca(2+) channels. Although they are structurally similar, we reveal critical differences in the function of the short STIM-Orai-activating regions (SOAR) of STIM1 and STIM2. We narrow these differences in Orai1 gating to a strategically exposed phenylalanine residue (Phe-394) in SOAR1, which in SOAR2 is substituted by a leucine residue. Remarkably, in full-length STIM1, replacement of Phe-394 with the dimensionally similar but polar histidine head group prevents both Orai1 binding and gating, creating an Orai1 non-agonist. Thus, this residue is critical in tuning the efficacy of Orai activation. While STIM1 is a full Orai1-agonist, leucine-replacement of this crucial residue in STIM2 endows it with partial agonist properties, which may be critical for limiting Orai1 activation stemming from its enhanced sensitivity to store-depletion.
Molecular Cancer Research | 2013
Gregor Balaburski; Julia I-Ju Leu; Neil Beeharry; Seth Hayik; Mark Andrake; Gao Zhang; Meenhard Herlyn; Jessie Villanueva; Roland L. Dunbrack; Tim J. Yen; Donna L. George; Maureen E. Murphy
The stress-induced HSP70 is an ATP-dependent molecular chaperone that plays a key role in refolding misfolded proteins and promoting cell survival following stress. HSP70 is marginally expressed in nontransformed cells, but is greatly overexpressed in tumor cells. Silencing HSP70 is uniformly cytotoxic to tumor but not normal cells; therefore, there has been great interest in the development of HSP70 inhibitors for cancer therapy. Here, we report that the HSP70 inhibitor 2-phenylethynesulfonamide (PES) binds to the substrate-binding domain of HSP70 and requires the C-terminal helical “lid” of this protein (amino acids 573–616) to bind. Using molecular modeling and in silico docking, we have identified a candidate binding site for PES in this region of HSP70, and we identify point mutants that fail to interact with PES. A preliminary structure–activity relationship analysis has revealed a derivative of PES, 2-(3-chlorophenyl) ethynesulfonamide (PES-Cl), which shows increased cytotoxicity and ability to inhibit autophagy, along with significantly improved ability to extend the life of mice with pre-B-cell lymphoma, compared with the parent compound (P = 0.015). Interestingly, we also show that these HSP70 inhibitors impair the activity of the anaphase promoting complex/cyclosome (APC/C) in cell-free extracts, and induce G2–M arrest and genomic instability in cancer cells. PES-Cl is thus a promising new anticancer compound with several notable mechanisms of action. Mol Cancer Res; 11(3); 219–29. ©2013 AACR.
Cell Host & Microbe | 2016
Roshan J. Thapa; Justin P. Ingram; Katherine B. Ragan; Shoko Nogusa; David F. Boyd; Asiel A. Benitez; Haripriya Sridharan; Rachelle Kosoff; Maria Shubina; Vanessa J. Landsteiner; Mark Andrake; Peter Vogel; Luis J. Sigal; Benjamin R. tenOever; Paul G. Thomas; Jason W. Upton; Siddharth Balachandran
Influenza A virus (IAV) is an RNA virus that is cytotoxic to most cell types in which it replicates. IAV activates the host kinase RIPK3, which induces cell death via parallel pathways of necroptosis, driven by the pseudokinase MLKL, and apoptosis, dependent on the adaptor proteins RIPK1 and FADD. How IAV activates RIPK3 remains unknown. We report that DAI (ZBP1/DLM-1), previously implicated as a cytoplasmic DNA sensor, is essential for RIPK3 activation by IAV. Upon infection, DAI recognizes IAV genomic RNA, associates with RIPK3, and is required for recruitment of MLKL and RIPK1 to RIPK3. Cells lacking DAI or containing DAI mutants deficient in nucleic acid binding are resistant to IAV-triggered necroptosis and apoptosis. DAI-deficient mice fail to control IAV replication and succumb to lethal respiratory infection. These results identify DAI as a link between IAV replication and RIPK3 activation and implicate DAI as a sensor of RNA viruses.
Archives of Biochemistry and Biophysics | 2013
Eileen K. Jaffe; Linda Stith; Sarah H. Lawrence; Mark Andrake; Roland L. Dunbrack
The structural basis for allosteric regulation of phenylalanine hydroxylase (PAH), whose dysfunction causes phenylketonuria (PKU), is poorly understood. A new morpheein model for PAH allostery is proposed to consist of a dissociative equilibrium between two architecturally different tetramers whose interconversion requires a ∼90° rotation between the PAH catalytic and regulatory domains, the latter of which contains an ACT domain. This unprecedented model is supported by in vitro data on purified full length rat and human PAH. The conformational change is both predicted to and shown to render the tetramers chromatographically separable using ion exchange methods. One novel aspect of the activated tetramer model is an allosteric phenylalanine binding site at the intersubunit interface of ACT domains. Amino acid ligand-stabilized ACT domain dimerization follows the multimerization and ligand binding behavior of ACT domains present in other proteins in the PDB. Spectroscopic, chromatographic, and electrophoretic methods demonstrate a PAH equilibrium consisting of two architecturally distinct tetramers as well as dimers. We postulate that PKU-associated mutations may shift the PAH quaternary structure equilibrium in favor of the low activity assemblies. Pharmacological chaperones that stabilize the ACT:ACT interface can potentially provide PKU patients with a novel small molecule therapeutic.
Journal of Biological Chemistry | 2011
Ravi Shankar Bojja; Mark Andrake; Steven Weigand; George Merkel; Olya Yarychkivska; Adam Henderson; Marissa Kummerling; Anna Marie Skalka
We determined the size and shape of full-length avian sarcoma virus (ASV) integrase (IN) monomers and dimers in solution using small angle x-ray scattering. The low resolution data obtained establish constraints for the relative arrangements of the three component domains in both forms. Domain organization within the small angle x-ray envelopes was determined by combining available atomic resolution data for individual domains with results from cross-linking coupled with mass spectrometry. The full-length dimer architecture so revealed is unequivocally different from that proposed from x-ray crystallographic analyses of two-domain fragments, in which interactions between the catalytic core domains play a prominent role. Core-core interactions are detected only in cross-linked IN tetramers and are required for concerted integration. The solution dimer is stabilized by C-terminal domain (CTD-CTD) interactions and by interactions of the N-terminal domain in one subunit with the core and CTD in the second subunit. These results suggest a pathway for formation of functional IN-DNA complexes that has not previously been considered and possible strategies for preventing such assembly.