Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tim J. Yen is active.

Publication


Featured researches published by Tim J. Yen.


Journal of Cell Biology | 2001

Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2

Valery Sudakin; Gordon K. Chan; Tim J. Yen

The mitotic checkpoint prevents cells with unaligned chromosomes from prematurely exiting mitosis by inhibiting the anaphase-promoting complex/cyclosome (APC/C) from targeting key proteins for ubiquitin-mediated proteolysis. We have examined the mechanism by which the checkpoint inhibits the APC/C by purifying an APC/C inhibitory factor from HeLa cells. We call this factor the mitotic checkpoint complex (MCC) as it consists of hBUBR1, hBUB3, CDC20, and MAD2 checkpoint proteins in near equal stoichiometry. MCC inhibitory activity is 3,000-fold greater than that of recombinant MAD2, which has also been shown to inhibit APC/C in vitro. Surprisingly, MCC is not generated from kinetochores, as it is also present and active in interphase cells. However, only APC/C isolated from mitotic cells was sensitive to inhibition by MCC. We found that the majority of the APC/C in mitotic lysates is associated with the MCC, and this likely contributes to the lag in ubiquitin ligase activity. Importantly, chromosomes can suppress the reactivation of APC/C. Chromosomes did not affect the inhibitory activity of MCC or the stimulatory activity of CDC20. We propose that the preformed interphase pool of MCC allows for rapid inhibition of APC/C when cells enter mitosis. Unattached kinetochores then target the APC/C for sustained inhibition by the MCC.


The EMBO Journal | 1991

CENP-E, a novel human centromere-associated protein required for progression from metaphase to anaphase.

Tim J. Yen; Duane A. Compton; Dwayne Wise; R P Zinkowski; B. R. Brinkley; William C. Earnshaw; Don W. Cleveland

We have identified a novel human centromere‐associated protein by preparing monoclonal antibodies against a fraction of HeLa chromosome scaffold proteins enriched for centromere/kinetochore components. One monoclonal antibody (mAb177) specifically stains the centromere region of mitotic human chromosomes and binds to a novel, approximately 250–300 kd chromosome scaffold associated protein named CENP‐E. In cells progressing through different parts of the cell cycle, the localization of CENP‐E differed markedly from that observed for the previously identified centromere proteins CENP‐A, CENP‐B, CENP‐C and CENP‐D. In contrast to these antigens, no mAb177 staining is detected during interphase, and staining first appears at the centromere region of chromosomes during prometaphase. This association with chromosomes remains throughout metaphase but is redistributed to the midplate at or just after the onset of anaphase. By telophase, the staining is localized exclusively to the midbody. Microinjection of the mAb177 into metaphase cells blocks or significantly delays progression into anaphase, although the morphology of the spindle and the configuration of the metaphase chromosomes appear normal in these metaphase arrested cells. This demonstrates that CENP‐E function is required for the transition from metaphase to anaphase.


Cell | 2009

Protein Architecture of the Human Kinetochore Microtubule Attachment Site

Xiaohu Wan; Ryan O'Quinn; Heather L. Pierce; Ajit P. Joglekar; Walt E. Gall; Jennifer G. DeLuca; Christopher W. Carroll; Song Tao Liu; Tim J. Yen; Bruce F. McEwen; P. Todd Stukenberg; Arshad Desai; E. D. Salmon

Chromosome segregation requires assembly of kinetochores on centromeric chromatin to mediate interactions with spindle microtubules and control cell-cycle progression. To elucidate the protein architecture of human kinetochores, we developed a two-color fluorescence light microscopy method that measures average label separation, Delta, at <5 nm accuracy. Delta analysis of 16 proteins representing core structural complexes spanning the centromeric chromatin-microtubule interface, when correlated with mechanical states of spindle-attached kinetochores, provided a nanometer-scale map of protein position and mechanical properties of protein linkages. Treatment with taxol, which suppresses microtubule dynamics and activates the spindle checkpoint, revealed a specific switch in kinetochore architecture. Cumulatively, Delta analysis revealed that compliant linkages are restricted to the proximity of chromatin, suggested a model for how the KMN (KNL1/Mis12 complex/Ndc80 complex) network provides microtubule attachment and generates pulling forces from depolymerization, and identified an intrakinetochore molecular switch that may function in controlling checkpoint activity.


Current Biology | 2004

The RanGAP1-RanBP2 Complex Is Essential for Microtubule-Kinetochore Interactions In Vivo

Jomon Joseph; Song-Tao Liu; Sandra A. Jablonski; Tim J. Yen; Mary Dasso

RanGAP1 is the activating protein for the Ran GTPase. Vertebrate RanGAP1 is conjugated to a small ubiquitin-like protein, SUMO-1. This modification promotes association of RanGAP1 with the interphase nuclear pore complex (NPC) through binding to the nucleoporin RanBP2, also known as Nup358. During mitosis, RanGAP1 is concentrated at kinetochores in a microtubule- (MT) and SUMO-1-dependent fashion. RanBP2 is also abundantly found on kinetochores in mitosis. Here we show that ablation of proteins required for MT-kinetochore attachment (Hec1/Ndc80, Nuf2 ) disrupts RanGAP1 and RanBP2 targeting to kinetochores. No similar disruption was observed after ablation of proteins nonessential for MT-kinetochore interactions (CENP-I, Bub1, CENP-E ). Acquisition of RanGAP1 and RanBP2 by kinetochores is temporally correlated in untreated cells with MT attachment. These patterns of accumulation suggest a loading mechanism wherein the RanGAP1-RanBP2 complex may be transferred along the MT onto the kinetochore. Depletion of RanBP2 caused mislocalization of RanGAP1, Mad1, Mad2, CENP-E, and CENP-F, as well as loss of cold-stable kinetochore-MT interactions and accumulation of mitotic cells with multipolar spindles and unaligned chromosomes. Taken together, our observations indicate that RanBP2 and RanGAP1 are targeted as a single complex that is both regulated by and essential for stable kinetochore-MT association.


Journal of Cell Biology | 2006

Mapping the assembly pathways that specify formation of the trilaminar kinetochore plates in human cells

Song-Tao Liu; Jerome B. Rattner; Sandra A. Jablonski; Tim J. Yen

We report the interactions amongst 20 proteins that specify their assembly to the centromere–kinetochore complex in human cells. Centromere protein (CENP)-A is at the top of a hierarchy that directs three major pathways, which are specified by CENP-C, -I, and Aurora B. Each pathway consists of branches that intersect to form nodes that may coordinate the assembly process. Complementary EM studies found that the formation of kinetochore trilaminar plates depends on the CENP-I/NUF2 branch, whereas CENP-C and Aurora B affect the size, shape, and structural integrity of the plates. We found that hMis12 is not constitutively localized at kinetochores, and that it is not essential for recruiting CENP-I. Our studies also revealed that kinetochores in HeLa cells contain an excess of CENP-A, of which ∼10% is sufficient to promote the assembly of normal levels of kinetochore proteins. We elaborate on a previous model that suggested kinetochores are assembled from repetitive modules (Zinkowski, R.P., J. Meyne, and B.R. Brinkley. 1991. J. Cell Biol. 113:1091–110).


Molecular Cell | 2008

SUMO-2/3 Modification and Binding Regulate the Association of CENP-E with Kinetochores and Progression through Mitosis

Xiang Dong Zhang; Jacqueline Goeres; Hong Zhang; Tim J. Yen; Andrew C. G. Porter; Michael J. Matunis

SUMOylation is essential for cell-cycle regulation in invertebrates; however, its functions during the mammalian cell cycle are largely uncharacterized. Mammals express three SUMO paralogs: SUMO-1, SUMO-2, and SUMO-3 (SUMO-2 and SUMO-3 are 96% identical and referred to as SUMO-2/3). We found that SUMO-2/3 localize to centromeres and condensed chromosomes, whereas SUMO-1 localizes to the mitotic spindle and spindle midzone, indicating that SUMO paralogs regulate distinct mitotic processes in mammalian cells. Consistent with this, global inhibition of SUMOylation caused a prometaphase arrest due to defects in targeting the microtubule motor protein CENP-E to kinetochores. CENP-E was found to be modified specifically by SUMO-2/3 and to possess SUMO-2/3 polymeric chain-binding activity essential for kinetochore localization. Our findings indicate that SUMOylation is a key regulator of the mammalian cell cycle, with SUMO-1 and SUMO-2/3 modification of different proteins regulating distinct processes.


Chromosoma | 1998

The hBUB1 and hBUBR1 kinases sequentially assemble onto kinetochores during prophase with hBUBR1 concentrating at the kinetochore plates in mitosis

Sandra A. Jablonski; Gordon K. Chan; Carol A. Cooke; William C. Earnshaw; Tim J. Yen

Abstract. The kinetochore binds an evolutionarily conserved set of checkpoint proteins that function to monitor whether chromosomes have aligned properly at the spindle equator. Human cells contain two related protein kinases, hBUB1 and hBUBR1, that appear to have evolved from a single ancestral BUB1 gene. We generated hBUB1- and hBUBR1-specific antibodies so that the localization patterns of these kinases could be directly compared. In the human U2OS osteosarcoma cell line, hBUB1 first appeared at kinetochores during early prophase before all kinetochores were occupied by hBUBR1 or CENP-F. Both proteins remained at kinetochores throughout mitosis but their staining intensity was reduced from anaphase onward. Kinetochores of unaligned chromosomes exhibited stronger hBUB1 and hBUBR1 staining. Immunoelectron microscopy showed that hBUBR1 appeared to be concentrated in the outer kinetochore plate and in some instances the inner plate as well. When chromosome spreads were examined by light microscopy, hBUB1 and hBUBR1 were coincident with CENP-E. This suggests that both kinases are concentrated near the surface of the kinetochore where they can monitor kinetochore-microtubule interactions.


Nature Cell Biology | 2000

Human Zw10 and ROD are mitotic checkpoint proteins that bind to kinetochores

Gordon K. Chan; Sandra A. Jablonski; D. A. Starr; Michael L. Goldberg; Tim J. Yen

Here we show that human Zeste White 10 (Zw10) and Rough deal (Rod) are new components of the mitotic checkpoint, as cells lacking these proteins at kinetochores fail to arrest in mitosis when exposed to microtubule inhibitors. Checkpoint failure and premature mitotic exit may explain why cells defective for hZw10 and hRod divide with lagging chromosomes. As Zw10 and Rod are not conserved in yeast, our data, combined with an accompanying study of Drosophila Zw10 and Rod, indicate that metazoans may require an elaborate spindle checkpoint to monitor complex kinetochore functions.


The EMBO Journal | 2007

The human Nup107–160 nuclear pore subcomplex contributes to proper kinetochore functions

Michela Zuccolo; Annabelle Alves; Vincent Galy; Stéphanie Bolhy; Etienne Formstecher; Victor Racine; Jean-Baptiste Sibarita; Tatsuo Fukagawa; Ramin Shiekhattar; Tim J. Yen; Valérie Doye

We previously demonstrated that a fraction of the human Nup107–160 nuclear pore subcomplex is recruited to kinetochores at the onset of mitosis. However, the molecular determinants for its kinetochore targeting and the functional significance of this localization were not investigated. Here, we show that the Nup107–160 complex interacts with CENP‐F, but that CENP‐F only moderately contributes to its targeting to kinetochores. In addition, we show that the recruitment of the Nup107–160 complex to kinetochores mainly depends on the Ndc80 complex. We further demonstrate that efficient depletion of the Nup107–160 complex from kinetochores, achieved either by combining siRNAs targeting several of its subunits excluding Seh1, or by depleting Seh1 alone, induces a mitotic delay. Further analysis of Seh1‐depleted cells revealed impaired chromosome congression, reduced kinetochore tension and kinetochore–microtubule attachment defects. Finally, we show that the presence of the Nup107–160 complex at kinetochores is required for the recruitment of Crm1 and RanGAP1–RanBP2 to these structures. Together, our data thus provide the first molecular clues underlying the function of the human Nup107–160 complex at kinetochores.


Cell | 1987

Autoregulation of tubulin expression is achieved through specific degradation of polysomal tubulin mRNAs

Joel S. Pachter; Tim J. Yen; Don W. Cleveland

We have utilized protein synthesis inhibitors to investigate the autoregulatory mechanism that uses the concentration of unpolymerized tubulin subunits to specify tubulin mRNA content in animal cells. Puromycin and pactamycin, both of which remove RNAs from polysomes, completely unlink tubulin RNA content from the level of free subunits, whereas pretreatment of cells with cycloheximide, which traps mRNAs onto stalled polyribosomes, enhances the specific degradation of tubulin RNAs in response to increases in the subunit content. Moreover, in the absence of protein synthesis inhibitors, the tubulin RNAs that are lost from cells with elevated free tubulin subunit levels are those that are associated with polyribosomes. Further, beta-tubulin mRNAs encoding a truncated translation product of only 26 amino acids (and that cannot be polyribosomal) are not substrates for autoregulation. We conclude that autoregulation of tubulin synthesis is achieved by specifically altering the stability of tubulin RNAs that are bound to polyribosomes.

Collaboration


Dive into the Tim J. Yen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Song-Tao Liu

Fox Chase Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gary D. Kao

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Mark Andrake

Fox Chase Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Haomin Huang

Fox Chase Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge