Mark Blaxter
University of Edinburgh
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mark Blaxter.
Nature Reviews Genetics | 2011
John W. Davey; Paul A. Hohenlohe; Paul D. Etter; Jason Q. Boone; Julian M. Catchen; Mark Blaxter
The advent of next-generation sequencing (NGS) has revolutionized genomic and transcriptomic approaches to biology. These new sequencing tools are also valuable for the discovery, validation and assessment of genetic markers in populations. Here we review and discuss best practices for several NGS methods for genome-wide genetic marker development and genotyping that use restriction enzyme digestion of target genomes to reduce the complexity of the target. These new methods — which include reduced-representation sequencing using reduced-representation libraries (RRLs) or complexity reduction of polymorphic sequences (CRoPS), restriction-site-associated DNA sequencing (RAD-seq) and low coverage genotyping — are applicable to both model organisms with high-quality reference genome sequences and, excitingly, to non-model species with no existing genomic data.
Nature | 1998
Mark Blaxter; Paul De Ley; James R. Garey; Leo X. Liu; Patsy Scheldeman; Andy Vierstraete; Jacques R. Vanfleteren; Laura Y. Mackey; Mark Dorris; Linda M. Frisse; J. T. Vida; W. Kelley Thomas
Nematodes are important: parasitic nematodes threaten the health of plants, animals and humans on a global scale,; interstitial nematodes pervade sediment and soil ecosystems in overwhelming numbers; and Caenorhabditis elegans is a favourite experimental model system. A lack of clearly homologous characters and the absence of an informative fossil record have prevented us from deriving a consistent evolutionary framework for the phylum. Here we present a phylogenetic analysis, using 53 small subunit ribosomal DNA sequences from a wide range of nematodes. With this analysis, we can compare animal-parasitic, plant-parasitic and free-living taxa using a common measurement. Our results indicate that convergent morphological evolution may be extensive and that present higher-level classification of the Nematoda will need revision. We identify five major clades within the phylum, all of which include parasitic species. We suggest that animal parasitism arose independently at least four times, and plant parasitism three times. We clarify the relationship of C. elegans to major parasitic groups; this will allow more effective exploitation of our genetic and biological knowledge of this model species.
Nature | 2012
Kanchon K. Dasmahapatra; James R. Walters; Adriana D. Briscoe; John W. Davey; Annabel Whibley; Nicola J. Nadeau; Aleksey V. Zimin; Daniel S.T. Hughes; Laura Ferguson; Simon H. Martin; Camilo Salazar; James J. Lewis; Sebastian Adler; Seung-Joon Ahn; Dean A. Baker; Simon W. Baxter; Nicola Chamberlain; Ritika Chauhan; Brian A. Counterman; Tamas Dalmay; Lawrence E. Gilbert; Karl H.J. Gordon; David G. Heckel; Heather M. Hines; Katharina Hoff; Peter W. H. Holland; Emmanuelle Jacquin-Joly; Francis M. Jiggins; Robert T. Jones; Durrell D. Kapan
The evolutionary importance of hybridization and introgression has long been debated. Hybrids are usually rare and unfit, but even infrequent hybridization can aid adaptation by transferring beneficial traits between species. Here we use genomic tools to investigate introgression in Heliconius, a rapidly radiating genus of neotropical butterflies widely used in studies of ecology, behaviour, mimicry and speciation. We sequenced the genome of Heliconius melpomene and compared it with other taxa to investigate chromosomal evolution in Lepidoptera and gene flow among multiple Heliconius species and races. Among 12,669 predicted genes, biologically important expansions of families of chemosensory and Hox genes are particularly noteworthy. Chromosomal organization has remained broadly conserved since the Cretaceous period, when butterflies split from the Bombyx (silkmoth) lineage. Using genomic resequencing, we show hybrid exchange of genes between three co-mimics, Heliconius melpomene, Heliconius timareta and Heliconius elevatus, especially at two genomic regions that control mimicry pattern. We infer that closely related Heliconius species exchange protective colour-pattern genes promiscuously, implying that hybridization has an important role in adaptive radiation.
Science | 2007
Elodie Ghedin; Shiliang Wang; David J. Spiro; Elisabet Caler; Qi Zhao; Jonathan Crabtree; Jonathan E. Allen; Arthur L. Delcher; David B. Guiliano; Diego Miranda-Saavedra; Samuel V. Angiuoli; Todd Creasy; Paolo Amedeo; Brian J. Haas; Najib M. El-Sayed; Jennifer R. Wortman; Tamara Feldblyum; Luke J. Tallon; Michael C. Schatz; Martin Shumway; Hean Koo; Seth Schobel; Mihaela Pertea; Mihai Pop; Owen White; Geoffrey J. Barton; Clotilde K. S. Carlow; Michael J. Crawford; Jennifer Daub; Matthew W. Dimmic
Parasitic nematodes that cause elephantiasis and river blindness threaten hundreds of millions of people in the developing world. We have sequenced the ∼90 megabase (Mb) genome of the human filarial parasite Brugia malayi and predict ∼11,500 protein coding genes in 71 Mb of robustly assembled sequence. Comparative analysis with the free-living, model nematode Caenorhabditis elegans revealed that, despite these genes having maintained little conservation of local synteny during ∼350 million years of evolution, they largely remain in linkage on chromosomal units. More than 100 conserved operons were identified. Analysis of the predicted proteome provides evidence for adaptations of B. malayi to niches in its human and vector hosts and insights into the molecular basis of a mutualistic relationship with its Wolbachia endosymbiont. These findings offer a foundation for rational drug design.
Molecular Ecology | 2002
Robin Floyd; Eyualem Abebe; Artemis Papert; Mark Blaxter
Using a molecular barcode, derived from single‐specimen polymerase chain reaction (PCR) and sequencing of the 5′ segment of the small subunit ribosomal RNA (SSU) gene, we have developed a molecular operational taxonomic unit (MOTU) scheme for soil nematodes. Individual specimens were considered to belong to the same MOTU when the sequenced segment of 450 bases was > 99.5% identical. A Scottish upland Agrostis‐Festuca grassland soil was sampled, using both culture‐based and random selection methods. One hundred and sixty‐six cultured isolates were sequenced, and clustered into five MOTU. From 74 randomly sampled individuals across the study site, 19 MOTU were defined. A subsequent sample of 18 individuals from a single subplot contained eight MOTU, four of which were unique to the single subplot sample. Interestingly, seven of these MOTU were not present in the culture‐independent sampling. Overall, a total of 23 MOTU were defined from only 240 sequences. Many MOTU could readily be assigned to classical, morphologically defined taxonomic units using a database of SSU sequences from named nematode species. The MOTU technique allows a rapid assessment of nematode taxon diversity in soils. Correlation with a database of sequences from known species offers a route to application of the technique in ecological surveys addressing biological as well as genetic diversity.
Proceedings of the Royal Society of London B: Biological Sciences | 1998
Claudio Bandi; Timothy J. C. Anderson; Claudio Genchi; Mark Blaxter
Intracellular bacteria have been observed in various species of filarial nematodes (family Onchocercidae). The intracellular bacterium of the canine filaria Dirofilaria immitis has been shown to be closely related to Wolbachia, a rickettsia-like micro–organism that is widespread among arthropods. However, the relationships between endosymbionts of different filariae, and between these and the arthropod wolbachiae, appear not to have been studied. To address these issues we have examined ten species of filarial nematodes for the presence of Wolbachia. For nine species, all samples examined were PCR positive using primers specific for the ftsZ gene of Wolbachia. For one species, the examined samples were PCR negative. Sequences of the amplified ftsZ gene fragments of filarial wolbachiae fall into two clusters (C and D), which are distinct from the A and B clusters recognized for arthropod wolbachiae. These four lineages (A to D) are related in a star–like phylogeny, with higher nucleotide divergence observed between C and D wolbachiae than that observed between A and B wolbachiae. In addition, within each of the two lineages of filarial wolbachiae, the phylogeny of the symbionts is consistent with the host phylogeny. Thus, there is no evidence for recent Wolbachia transmission between arthropods and nematodes. Endosymbiont 16S ribosomal DNA sequences from a subset of filarial species support these findings.
Philosophical Transactions of the Royal Society B | 2005
Mark Blaxter; Jenna Mann; Tom Chapman; Fran Thomas; Claire Whitton; Robin Floyd; Eyualem Abebe
Abstract The scale of diversity of life on this planet is a significant challenge for any scientific programme hoping to produce a complete catalogue, whatever means is used. For DNA barcoding studies, this difficulty is compounded by the realization that any chosen barcode sequence is not the gene ‘for’ speciation and that taxa have evolutionary histories. How are we to disentangle the confounding effects of reticulate population genetic processes? Using the DNA barcode data from meiofaunal surveys, here we discuss the benefits of treating the taxa defined by barcodes without reference to their correspondence to ‘species’, and suggest that using this non-idealist approach facilitates access to taxon groups that are not accessible to other methods of enumeration and classification. Major issues remain, in particular the methodologies for taxon discrimination in DNA barcode data.
Briefings in Functional Genomics | 2010
John W. Davey; Mark Blaxter
Next-generation sequencing technologies are making a substantial impact on many areas of biology, including the analysis of genetic diversity in populations. However, genome-scale population genetic studies have been accessible only to well-funded model systems. Restriction-site associated DNA sequencing, a method that samples at reduced complexity across target genomes, promises to deliver high resolution population genomic data-thousands of sequenced markers across many individuals-for any organism at reasonable costs. It has found application in wild populations and non-traditional study species, and promises to become an important technology for ecological population genomics.
Journal of Clinical Investigation | 1999
Achim Hoerauf; Kerstin Nissen-Pähle; Christel Schmetz; Kim Henkle-Dührsen; Mark Blaxter; Dietrich W. Büttner; Michaela Y. Gallin; Khaled M. Al-Qaoud; Richard Lucius; Bernhard Fleischer
Intracellular bacteria have been described in several species of filarial nematodes, but their relationships with, and effects on, their nematode hosts have not previously been elucidated. In this study, intracellular bacteria were observed in tissues of the rodent parasite Litomosoides sigmodontis by transmission electron microscopy and by immunohistochemistry using antiendobacterial heat shock protein-60 antisera. Molecular phylogenetic analysis of the bacterial 16S ribosomal RNA gene, isolated by PCR, showed a close relationship to the rickettsial Wolbachia endobacteria of arthropods and to other filarial intracellular bacteria. The impact of tetracycline therapy of infected rodents on L. sigmodontis development was analyzed in order to understand the role(s) these bacteria might play in filarial biology. Tetracycline therapy, when initiated with L. sigmodontis infection, eliminated the bacteria and resulted in filarial growth retardation and infertility. If initiated after microfilarial development, treatment reduced filarial fertility. Treatment with antibiotics not affecting rickettsial bacteria did not inhibit filarial development. Acanthocheilonema viteae filariae were shown to lack intracellular bacteria and to be insensitive to tetracycline. These results suggest a mutualistic interaction between the intracellular bacteria and the filarial nematode. Investigation of such a mutualism in endobacteria-containing human filariae is warranted for a potential chemotherapeutic exploitation.
BMC Genomics | 2010
Sujai Kumar; Mark Blaxter
BackgroundRoche 454 pyrosequencing has become a method of choice for generating transcriptome data from non-model organisms. Once the tens to hundreds of thousands of short (250-450 base) reads have been produced, it is important to correctly assemble these to estimate the sequence of all the transcripts. Most transcriptome assembly projects use only one program for assembling 454 pyrosequencing reads, but there is no evidence that the programs used to date are optimal. We have carried out a systematic comparison of five assemblers (CAP3, MIRA, Newbler, SeqMan and CLC) to establish best practices for transcriptome assemblies, using a new dataset from the parasitic nematode Litomosoides sigmodontis.ResultsAlthough no single assembler performed best on all our criteria, Newbler 2.5 gave longer contigs, better alignments to some reference sequences, and was fast and easy to use. SeqMan assemblies performed best on the criterion of recapitulating known transcripts, and had more novel sequence than the other assemblers, but generated an excess of small, redundant contigs. The remaining assemblers all performed almost as well, with the exception of Newbler 2.3 (the version currently used by most assembly projects), which generated assemblies that had significantly lower total length. As different assemblers use different underlying algorithms to generate contigs, we also explored merging of assemblies and found that the merged datasets not only aligned better to reference sequences than individual assemblies, but were also more consistent in the number and size of contigs.ConclusionsTranscriptome assemblies are smaller than genome assemblies and thus should be more computationally tractable, but are often harder because individual contigs can have highly variable read coverage. Comparing single assemblers, Newbler 2.5 performed best on our trial data set, but other assemblers were closely comparable. Combining differently optimal assemblies from different programs however gave a more credible final product, and this strategy is recommended.