Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark Castanares is active.

Publication


Featured researches published by Mark Castanares.


Current Medicinal Chemistry | 2011

Nucleic acid aptamers: clinical applications and promising new horizons.

Xiaohua Ni; Mark Castanares; Amarnath Mukherjee; Shawn E. Lupold

Aptamers are a special class of nucleic acid molecules that are beginning to be investigated for clinical use. These small RNA/DNA molecules can form secondary and tertiary structures capable of specifically binding proteins or other cellular targets; they are essentially a chemical equivalent of antibodies. Aptamers have the advantage of being highly specific, relatively small in size, and non-immunogenic. Since the discovery of aptamers in the early 1990s, great efforts have been made to make them clinically relevant for diseases like cancer, HIV, and macular degeneration. In the last two decades, many aptamers have been clinically developed as inhibitors for targets such as vascular endothelial growth factor (VEGF) and thrombin. The first aptamer based therapeutic was FDA approved in 2004 for the treatment of age-related macular degeneration and several other aptamers are currently being evaluated in clinical trials. With advances in targeted-therapy, imaging, and nanotechnology, aptamers are readily considered as potential targeting ligands because of their chemical synthesis and ease of modification for conjugation. Preclinical studies using aptamer-siRNA chimeras and aptamer targeted nanoparticle therapeutics have been very successful in mouse models of cancer and HIV. In summary aptamers are in several stages of development, from pre-clinical studies to clinical trials and even as FDA approved therapeutics. In this review, we will discuss the current state of aptamers in clinical trials as well as some promising aptamers in pre-clinical development.


Journal of Medicinal Chemistry | 2008

Synthesis and Evaluation of Technetium-99m- and Rhenium-Labeled Inhibitors of the Prostate-Specific Membrane Antigen (PSMA)

Sangeeta Ray Banerjee; Catherine A. Foss; Mark Castanares; Ronnie C. Mease; Youngjoo Byun; James Fox; John Hilton; Shawn E. Lupold; Alan P. Kozikowski; Martin G. Pomper

The prostate-specific membrane antigen (PSMA) is increasingly recognized as a viable target for imaging and therapy of cancer. We prepared seven (99m)Tc/Re-labeled compounds by attaching known Tc/Re chelating agents to an amino-functionalized PSMA inhibitor (lys-NHCONH-glu) with or without a variable length linker moiety. K i values ranged from 0.17 to 199 nM. Ex vivo biodistribution and in vivo imaging demonstrated the degree of specific binding to engineered PSMA+ PC3 PIP tumors. PC3-PIP cells are derived from PC3 that have been transduced with the gene for PSMA. Despite demonstrating nearly the lowest PSMA inhibitory potency of this series, [(99m)Tc(CO)3( L1)] (+) ( L1 = (2-pyridylmethyl)2N(CH2) 4CH(CO2H)NHCO-(CH2) 6CO-NH-lys-NHCONH-glu) showed the highest, most selective PIP tumor uptake, at 7.9 +/- 4.0% injected dose per gram of tissue at 30 min postinjection. Radioactivity cleared from nontarget tissues to produce a PIP to flu (PSMA-PC3) ratio of 44:1 at 120 min postinjection. PSMA can accommodate the steric requirements of (99m)Tc/Re complexes within PSMA inhibitors, the best results achieved with a linker moiety between the epsilon amine of the urea lysine and the chelator.


Journal of Medicinal Chemistry | 2008

Radiohalogenated Prostate-Specific Membrane Antigen (PSMA)- Based Ureas as Imaging Agents for Prostate Cancer

Ying Chen; Catherine A. Foss; Youngjoo Byun; Sridhar Nimmagadda; Mrudula Pullambhatla; James Fox; Mark Castanares; Shawn E. Lupold; John W. Babich; Ronnie C. Mease; Martin G. Pomper

To extend our development of new imaging agents targeting the prostate-specific membrane antigen (PSMA), we have used the versatile intermediate 2-[3-(5-amino-1-carboxy-pentyl)-ureido]-pentanedioic acid (Lys-C(O)-Glu), which allows ready incorporation of radiohalogens for single photon emission computed tomography (SPECT) and positron emission tomography (PET). We prepared 2-[3-[1-carboxy-5-(4-[(125)I]iodo-benzoylamino)-pentyl]-ureido]-pentanedioic acid ([(125)I]3), 2-[3-[1-carboxy-5-(4-[(18)F]fluoro-benzoylamino)-pentyl]-ureido]-pentanedioic acid ([(18)F]6), and 2-(3-[1-carboxy-5-[(5-[(125)I]iodo-pyridine-3-carbonyl)-amino]-pentyl]-ureido)-pentanedioic acid ([(125)I]8) in 65-80% (nondecay-corrected), 30-35% (decay corrected), and 59-75% (nondecay-corrected) radiochemical yields. Compound [(125)I]3 demonstrated 8.8 +/- 4.7% injected dose per gram (%ID/g) within PSMA(+) PC-3 PIP tumor at 30 min postinjection, which persisted, with clear delineation of the tumor by SPECT. Similar tumor uptake values at early time points were demonstrated for [(18)F]6 (using PET) and [(125)I]8. Because of the many radiohalogenated moieties that can be attached via the epsilon amino group, the intermediate Lys-C(O)-Glu is an attractive template upon which to develop new imaging agents for prostate cancer.


Journal of Clinical Investigation | 2011

Prostate-targeted radiosensitization via aptamer-shRNA chimeras in human tumor xenografts

Xiaohua Ni; Yonggang Zhang; Judit Ribas; Wasim H. Chowdhury; Mark Castanares; Zhewei Zhang; Marikki Laiho; Theodore L. DeWeese; Shawn E. Lupold

Dose-escalated radiation therapy for localized prostate cancer (PCa) has a clear therapeutic benefit; however, escalated doses may also increase injury to noncancerous tissues. Radiosensitizing agents can improve ionizing radiation (IR) potency, but without targeted delivery, these agents will also sensitize surrounding normal tissues. Here we describe the development of prostate-targeted RNAi agents that selectively sensitized prostate-specific membrane antigen-positive (PSMA-positive) cells to IR. siRNA library screens identified DNA-activated protein kinase, catalytic polypeptide (DNAPK) as an ideal radiosensitization target. DNAPK shRNAs, delivered by PSMA-targeting RNA aptamers, selectively reduced DNAPK in PCa cells, xenografts, and human prostate tissues. Aptamer-targeted DNAPK shRNAs, combined with IR, dramatically and specifically enhanced PSMA-positive tumor response to IR. These findings support aptamer-shRNA chimeras as selective sensitizing agents for the improved treatment of high-risk localized PCa.


Nucleic Acids Research | 2012

A novel source for miR-21 expression through the alternative polyadenylation of VMP1 gene transcripts

Judit Ribas; Xiaohua Ni; Mark Castanares; Minzhi M. Liu; David Esopi; Srinivasan Yegnasubramanian; Ronald Rodriguez; Joshua T. Mendell; Shawn E. Lupold

miR-21 is the most commonly over-expressed microRNA (miRNA) in cancer and a proven oncogene. Hsa-miR-21 is located on chromosome 17q23.2, immediately downstream of the vacuole membrane protein-1 (VMP1) gene, also known as TMEM49. VMP1 transcripts initiate ∼130 kb upstream of miR-21, are spliced, and polyadenylated only a few hundred base pairs upstream of the miR-21 hairpin. On the other hand, primary miR-21 transcripts (pri-miR-21) originate within the last introns of VMP1, but bypass VMP1 polyadenylation signals to include the miR-21 hairpin. Here, we report that VMP1 transcripts can also bypass these polyadenylation signals to include miR-21, thus providing a novel and independently regulated source of miR-21, termed VMP1–miR-21. Northern blotting, gene-specific RT-PCR, RNA pull-down and DNA branching assays support that VMP1–miR-21 is expressed at significant levels in a number of cancer cell lines and that it is processed by the Microprocessor complex to produce mature miR-21. VMP1 and pri-miR-21 are induced by common stimuli, such as phorbol-12-myristate-13-acetate (PMA) and androgens, but show differential responses to some stimuli such as epigenetic modifying agents. Collectively, these results indicate that miR-21 is a unique miRNA capable of being regulated by alternative polyadenylation and two independent gene promoters.


Clinical Cancer Research | 2015

Real-time, Near-Infrared Fluorescence Imaging with an Optimized Dye/Light Source/Camera Combination for Surgical Guidance of Prostate Cancer

Brian P. Neuman; John Eifler; Mark Castanares; Wasim H. Chowdhury; Ying Chen; Ronnie C. Mease; Rong Ma; Amarnath Mukherjee; Shawn E. Lupold; Martin G. Pomper; Ronald Rodriguez

Purpose: The prostate-specific membrane antigen (PSMA) is a surface glycoprotein overexpressed on malignant prostate cells, as well as in the neovasculature of many tumors. Recent efforts to target PSMA for imaging prostate cancer rely on suitably functionalized low-molecular-weight agents. YC-27 is a low-molecular-weight, urea-based agent that enables near-infrared (NIR) imaging of PSMA in vivo. Experimental Design: We have developed and validated a laparoscopic imaging system (including an optimized light source, LumiNIR) that is capable of imaging small tumor burdens with minimal background fluorescence in real-time laparoscopic extirpative surgery of small prostate tumor xenografts in murine and porcine models. Results: In a mouse model, we demonstrate the feasibility of using real-time NIR laparoscopic imaging to detect and surgically remove PSMA-positive xenografts. We then validate the use of our laparoscopic real-time NIR imaging system in a large animal model. Our novel light source, which is optimized for YC-27, is capable of detecting as little as 12.4 pg/mL of the compound (2.48-pg YC-27 in 200-μL agarose). Finally, in a mouse xenograft model, we demonstrate that the use of real-time NIR imaging can reduce positive surgical margins (PSM). Conclusions: These data indicate that a NIR-emitting fluorophore targeted to PSMA may allow improved surgical treatment of human prostate cancer, reduce the rate of PSMs, and alleviate the need for adjuvant radiotherapy postoperatively. Clin Cancer Res; 21(4); 771–80. ©2014 AACR.


The Journal of Nuclear Medicine | 2014

Evaluation of Prostate-Specific Membrane Antigen as an Imaging Reporter

Mark Castanares; Amarnath Mukherjee; Wasim H. Chowdhury; Minzhi Liu; Ying Chen; Ronnie C. Mease; Yuchuan Wang; Ronald Rodriguez; Shawn E. Lupold; Martin G. Pomper

Genetic reporters provide a noninvasive method to monitor and evaluate a population of cells. The ideal properties of a gene reporter-probe system include biocompatibility, lack of immunogenicity, low background expression or signal, and high sensitivity of detection. The prostate-specific membrane antigen (PSMA) is an attractive candidate for a genetic reporter as it is a human transmembrane protein with a selective expression pattern, and there are several PSMA imaging agents available for clinical and preclinical applications. We evaluated the use of PSMA as a genetic imaging reporter by comparison to 2 clinically established reporters, the mutant herpes simplex virus type I thymidine kinase and the human sodium-iodide symporter. Methods: Adenoviruses expressing each reporter were constructed and validated in vitro for expression and function. To compare PSMA with existing imaging reporters, a bilateral Matrigel suspension model was established with nude mice bearing cells equally infected with each reporter or control adenovirus. Dynamic PET was performed, and time–activity curves were generated for each reporter-probe pair. Results: A comparison of peak target-to-background ratios revealed that PSMA offered the highest ratio relative to the control Matrigel suspension as well as muscle. Further, as proof of concept, PSMA was applied as an imaging reporter to monitor adenoviral liver transduction with both nuclear and optical imaging probes. Conclusion: These preliminary studies support further development of PSMA as a noninvasive genetic reporter.


Molecular Cancer Therapeutics | 2015

Systemic administration and targeted radiosensitization via chemically synthetic aptamer-siRNA chimeras in human tumor xenografts

Xiaohua Ni; Yonggang Zhang; Kenji Zennami; Mark Castanares; Amarnath Mukherjee; Raju Raval; Haoming Zhou; Theodore L. DeWeese; Shawn E. Lupold

Radiation therapy is a highly effective tool for treating all stages of prostate cancer, from curative approaches in localized disease to palliative care and enhanced survival for patients with distant bone metastases. The therapeutic index of these approaches may be enhanced with targeted radiation-sensitizing agents. Aptamers are promising nucleic acid delivery agents for short interfering RNAs (siRNA) and short hairpin RNAs (shRNA). We have previously developed a radiation-sensitizing RNA aptamer–shRNA chimera that selectively delivers DNA-PK targeting shRNAs to prostate-specific membrane antigen (PSMA) positive cells in the absence of transfection reagents. Although these chimera are effective, their synthesis requires in vitro transcription and their evaluation was limited to intratumoral administration. Here, we have developed a second-generation aptamer–siRNA chimera that can be assembled through the annealing of three separate chemically synthesized components. The resulting chimera knocked down DNA-PK in PSMA-positive prostate cancer cells, without the need of additional transfection reagents, and enhanced the efficacy of radiation-mediated cell death. Following intravenous injection, the chimera effectively knocked down DNA-PK in established subcutaneous PSMA-positive tumors. Systemic treatment with these radiation-sensitizing agents selectively enhanced the potency of external beam radiation therapy for established PSMA-positive tumors. Mol Cancer Ther; 14(12); 2797–804. ©2015 AACR.


Cancer Gene Therapy | 2010

Armoring CRAds with p21/Waf-1 shRNAs: The next generation of oncolytic adenoviruses

Naseruddin Höti; Wasim H. Chowdhury; Sadaf Mustafa; Judit Ribas; Mark Castanares; Tamara Johnson; Minzhi M. Liu; Shawn E. Lupold; Ronald Rodriguez

Conditionally replicating adenoviruses (CRAds) represent a promising modality for the treatment of neoplastic diseases, including Prostate Cancer. Selectively replicating viruses can be generated by placing a tissue or cancer-specific promoter upstream of one or more of the viral genes required for replication (for example, E1A, E1B). We have previously reported multiple cellular processes that can attenuate viral replication, which in turn compromises viral oncolysis and tumor kill. In this study, we investigated the importance of the cyclin-dependent kinase inhibitor p21/Waf-1, on viral replication and tumor growth. To our knowledge, this is the first report describing the importance of p21/Waf-1shRNA on the induction of an androgen responsive element (ARE) based promoter driving the E1A gene. As a proof of concept, the study emphasizes the use of RNA interference technology to overcome promoter weaknesses for tissue-specific oncolytic viruses, as well as the cellular inhibitor pathways on viral life cycle. Using RNA interference against p21/Waf-1, we were able to show an increase in viral replication and viral oncolysis of prostate cancer cells. Similarly, CRAd viruses that carry p21/Waf-1 shRNA (Ad5-RV004.21) were able to prevent tumor outgrowth that resulted in a marked increase in the mean survival time of tumor-bearing mice compared with CRAd without p21/Waf-1 shRNA (Ad5-RV004). In studies combining Ad5-RV004.21 with Adriamycin, a suprar-additive effect was observed only in CRAds that harbor shRNA against p21/Waf-1. Taken together, these findings of enhanced viral replication in prostate cancer cells by using RNA interference against the cdk inhibitor p21/Waf-1 have significant implications in the development of prostate-specific CRAd therapies.


Journal of Controlled Release | 2017

Small molecule delivery to solid tumors with chitosan-coated PLGA particles: A lesson learned from comparative imaging

Jinho Park; Yihua Pei; Hyesun Hyun; Mark Castanares; David S. Collins; Yoon Yeo

&NA; For polymeric nanoparticles (NPs) to deliver more drugs to tumors than free drug solution, it is critical that the NPs establish interactions with tumor cells and avoid removal from the tumors. Since traditional polyethylene glycol (PEG) surface layer interferes with the cell‐NP interaction in tumors, we used a water‐soluble and blood‐compatible chitosan derivative called zwitterionic chitosan (ZWC) as an alternative surface coating for poly(lactic‐co‐glycolic acid) (PLGA) NPs. The ZWC‐coated PLGA NPs showed pH‐dependent surface charge profiles and differential cellular interactions according to the pH of the medium. The in vivo delivery of ZWC‐coated NPs was evaluated in mice bearing LS174T‐xenografts using magnetic resonance (MR) imaging and fluorescence whole body imaging, which respectively tracked iron oxide particles and indocyanine green (ICG) encapsulated in the NPs as tracers. MR imaging showed that ZWC‐coated NPs were more persistent in tumors than PEG‐coated NPs, in agreement with the in vitro results. However, the fluorescence imaging indicated that the increased NP retention in tumors by the ZWC coating did not significantly affect the ICG distribution in tumors due to the rapid release of the dye. This study shows that stable drug retention in NPs during circulation is a critical prerequisite to successful translation of the potential benefits of surface‐engineered NPs. Graphical abstract Figure. No caption available.

Collaboration


Dive into the Mark Castanares's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ronald Rodriguez

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ying Chen

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Eifler

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Xiaohua Ni

Johns Hopkins University

View shared research outputs
Researchain Logo
Decentralizing Knowledge