Mark Charlton-Perkins
Cincinnati Children's Hospital Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mark Charlton-Perkins.
Development | 2007
Baotong Xie; Mark Charlton-Perkins; Elizabeth C. McDonald; Brian Gebelein; Tiffany Cook
A major question in development is how different specialized cell types arise from a common progenitor. In the adult Drosophila compound eye, color discrimination is achieved by UV-, blue- and green-sensitive photoreceptors (PRs). These different PR subsets arise from neuronal precursors called R7 and R8 cells. Recent studies have demonstrated that R7-based UV-sensitive PRs require the repression of R8-based blue/green-sensitive PR characteristics to properly develop. This repression is mediated by the transcription factor Prospero (Pros). Here, we report that Senseless (Sens), a Drosophila ortholog of the vertebrate Gfi1 transcription factor, plays an opposing role to Pros by both negatively regulating R7-based features and positively enforcing R8-based features during terminal differentiation. In addition, we demonstrate that Pros and Sens function together with the transcription factor Orthodenticle (Otd) to oppositely regulate R7 and R8 PR Rhodopsin gene expression in vitro. These data show that sens, previously shown to be essential for neuronal specification, also controls differentiation of specific neuronal subtypes in the retina. Interestingly, Pros has recently been shown to function as a tumor suppressor, whereas Gfi1 is a well-characterized oncogene. Thus, we propose that sens/pros antagonism is important for regulating many biological processes.
Science | 2013
David Jukam; Baotong Xie; Jens Rister; David Terrell; Mark Charlton-Perkins; Daniela Pistillo; Brian Gebelein; Claude Desplan; Tiffany Cook
Introduction: A finite number of signaling pathways are repurposed during animal development to regulate an extraordinary array of cellular decisions. Elucidating context-specific mechanisms is crucial for understanding how cellular diversity is generated and for defining potential avenues of pathway misregulation during disease. The Hippo tumor suppressor pathway has been primarily studied in growth control where it inhibits the oncogenic transcriptional coactivator Yorkie (Yki) (YAP/TAZ in vertebrates). The Hippo pathway also functions in nongrowth contexts such as postmitotic fate specification. In the Drosophila visual system, R8 photoreceptor neurons terminally differentiate into one of two alternative subtypes that express either blue-light–sensitive Rhodopsin5 (Rh5) or green-light–sensitive Rhodopsin6 (Rh6). These mutually exclusive cell fates are established by the Hippo pathway kinase warts and the growth regulator gene melted, which repress each other’s expression. However, the mechanisms underlying the context-specific use of the Hippo pathway in postmitotic fate decisions remain unclear. Context-specific regulation by the Hippo signaling in postmitotic photoreceptors. The Hippo pathway uses negative feedback through its transcriptional effector Yki for homeostatic control of proliferation. In Drosophila eyes, two alternative fates of blue- versus green-sensitive R8 photoreceptors are regulated by antagonism between the growth regulator Melted and the Hippo pathway. Contrary to the growth mechanism, Yki positive feedback and a cell-type–restricted transcription factor network promote repurposing of the Hippo pathway for binary fate decisions. Methods: To define the regulatory mechanisms of Hippo-dependent cell fate decisions in Drosophila photoreceptor neurons, we used a combination of genetic epistasis analyses, in vivo cis-regulatory studies, a candidate gene RNA interference screen, and cell culture–based transcription assays Results: We show that the transcriptional output of the Hippo pathway in photoreceptor differentiation, as in cell proliferation, is mediated through the factors Yki and Scalloped. In contrast to growth control, where Yki limits its own activity by negative feedback, we identify two Yki positive-feedback mechanisms: In blue-sensitive Rh5 photoreceptors, Yki represses its own negative regulator warts, downstream of melted; Yki also promotes melted expression, which subsequently represses warts to further promote Yki function. Yki cooperates with the transcription factors Orthodenticle (Otd) and Traffic Jam (Tj) to promote melted expression and Rh5 photoreceptor fate. Otd and Tj, othologs of the mammalian OTX/CRX and MAF/NRL transcription factors, form an evolutionarily conserved transcriptional module for generating photoreceptor subtype diversity. We also show that the transcription factors Senseless and Pph13 create a permissive environment for Warts/Hippo signaling to promote the alternative “default” green-sensitive Rh6 fate. Hence, Hippo pathway function integrates with four cell-type–restricted transcription factors, each promoting genetically different aspects of R8 subtypes, such that Yki activity ultimately coordinates the binary fate decision between blue- and green-sensitive photoreceptors. Discussion: This work illustrates how molecular signaling pathways can adopt context-specific regulation. Yki positive feedback in the photoreceptor fate decision is opposite to the negative feedback found in Hippo growth control. These distinct network-level feedback mechanisms provide context-appropriate functions: homeostasis to fine-tune growth regulation and an all-or-nothing fate decision to ensure robust differentiation of sensory neuron subtypes. Altering network-level systems properties, such as positive or negative feedback, within biochemically conserved pathways may be broadly used to co-opt signaling networks for use in cellular contexts as distinct as proliferation and terminal differentiation. Complexity and Diversity Complex organisms must produce and maintain an extraordinary diversity of cell and tissue types with a limited number of genes and molecular pathways. Cells accomplish this by reusing the same signaling networks at different times, in different tissues, and for different purposes, yet how this context-specificity is achieved is poorly understood. Jukam et al. (1238016, published online 29 August) show how a set of genes that function in cell and tissue growth can be used again in nondividing fly photoreceptor neurons to ensure that flies develop appropriate sensitivity to both blue and green light. The Hippo pathway undergoes a regulatory change—from negative to positive feedback—that requires a tissue-specific transcription factor network. This network uses evolutionarily conserved regulatory factors whose mutations in humans result in degenerative retinal diseases. The context-appropriate positive feedback in flies ensures an all-or-nothing fate decision necessary to establish a functional visual system. Hippo directs cell differentiation and fate through context- and tissue-specific feedback and transcription networks. Signaling pathways are reused for multiple purposes in plant and animal development. The Hippo pathway in mammals and Drosophila coordinates proliferation and apoptosis via the coactivator and oncoprotein YAP/Yorkie (Yki), which is homeostatically regulated through negative feedback. In the Drosophila eye, cross-repression between the Hippo pathway kinase LATS/Warts (Wts) and growth regulator Melted generates mutually exclusive photoreceptor subtypes. Here, we show that this all-or-nothing neuronal differentiation results from Hippo pathway positive feedback: Yki both represses its negative regulator, warts, and promotes its positive regulator, melted. This postmitotic Hippo network behavior relies on a tissue-restricted transcription factor network—including a conserved Otx/Orthodenticle-Nrl/Traffic Jam feedforward module—that allows Warts-Yki-Melted to operate as a bistable switch. Altering feedback architecture provides an efficient mechanism to co-opt conserved signaling networks for diverse purposes in development and evolution.
Current Topics in Developmental Biology | 2010
Mark Charlton-Perkins; Tiffany Cook
In the past, vast differences in ocular structure, development, and physiology throughout the animal kingdom led to the widely accepted notion that eyes are polyphyletic, that is, they have independently arisen multiple times during evolution. Despite the dissimilarity between vertebrate and invertebrate eyes, it is becoming increasingly evident that the development of the eye in both groups shares more similarity at the genetic level than was previously assumed, forcing a reexamination of eye evolution. Understanding the molecular underpinnings of cell type specification during Drosophila eye development has been a focus of research for many labs over the past 25 years, and many of these findings are nicely reviewed in Chapters 1 and 4. A somewhat less explored area of research, however, considers how these cells, once specified, develop into functional ocular structures. This review aims to summarize the current knowledge related to the terminal differentiation events of the retina, corneal lens, and pigmented epithelia in the fly eye. In addition, we discuss emerging evidence that the different functional components of the fly eye share developmental pathways and functions with the vertebrate eye.
Developmental Biology | 2010
Elizabeth C. McDonald; Baotong Xie; Michael Workman; Mark Charlton-Perkins; David Terrell; Joachim Reischl; Ernst A. Wimmer; Brian Gebelein; Tiffany Cook
Orthodenticle (Otd)-related transcription factors are essential for anterior patterning and brain morphogenesis from Cnidaria to Mammals, and genetically underlie several human retinal pathologies. Despite their key developmental functions, relatively little is known regarding the molecular basis of how these factors regulate downstream effectors in a cell- or tissue-specific manner. Many invertebrate and vertebrate species encode two to three Otd proteins, whereas Drosophila encodes a single Otd protein. In the fly retina, Otd controls rhabdomere morphogenesis of all photoreceptors and regulates distinct Rhodopsin-encoding genes in a photoreceptor subtype-specific manner. Here, we performed a structure-function analysis of Otd during Drosophila eye development using in vivo rescue experiments and in vitro transcriptional regulatory assays. Our findings indicate that Otd requires at least three distinct transcriptional regulatory domains to control photoreceptor-specific rhodopsin gene expression and photoreceptor morphogenesis. Our results also uncover a previously unknown role for Otd in preventing co-expression of sensory receptors in blue vs. green-sensitive R8 photoreceptors. Sequence analysis indicates that many of the transcriptional regulatory domains identified here are conserved in multiple Diptera Otd-related proteins. Thus, these studies provide a basis for identifying shared molecular pathways involved in a wide range of developmental processes.
Molecular Genetics and Genomics | 2011
Mark Charlton-Perkins; Nadean L. Brown; Tiffany Cook
The evolution of the eye has been a major subject of study dating back centuries. The advent of molecular genetics offered the surprising finding that morphologically distinct eyes rely on conserved regulatory gene networks for their formation. While many of these advances often stemmed from studies of the compound eye of the fruit fly, Drosophila melanogaster, and later translated to discoveries in vertebrate systems, studies on vertebrate lens development far outnumber those in Drosophila. This may be largely historical, since Spemann and Mangold’s paradigm of tissue induction was discovered in the amphibian lens. Recent studies on lens development in Drosophila have begun to define molecular commonalities with the vertebrate lens. Here, we provide an overview of Drosophila lens development, discussing intrinsic and extrinsic factors controlling lens cell specification and differentiation. We then summarize key morphological and molecular events in vertebrate lens development, emphasizing regulatory factors and networks strongly associated with both systems. Finally, we provide a comparative analysis that highlights areas of research that would help further clarify the degree of conservation between the formation of dioptric systems in invertebrates and vertebrates.
PLOS ONE | 2013
Nathan Luebbering; Mark Charlton-Perkins; Justin P. Kumar; Stephanie M. Rollmann; Tiffany Cook; Vaughn Cleghon
The DYRKs (dual-specificity tyrosine phosphorylation-regulated kinases) are a conserved family of protein kinases that are associated with a number of neurological disorders, but whose biological targets are poorly understood. Drosophila encodes three Dyrks: minibrain/Dyrk1A, DmDyrk2, and DmDyrk3. Here we describe the creation and characterization of a DmDyrk2 null allele, DmDyrk21w17. We provide evidence that the smell impaired allele smi35A1, is likely to encode DmDyrk2. We also demonstrate that DmDyrk2 is expressed late in the developing third antennal segment, an anatomical structure associated with smell. In addition, we find that DmDyrk2 is expressed in the morphogenetic furrow of the developing eye, that loss of DmDyrk2 in the eye produced a subtle but measurable defect, and that ectopic DmDyrk2 expression in the eye produced a strong rough eye phenotype characterized by increased secondary, tertiary and bristle interommatidial cells. This phenotype was dependent on DmDyrk2 kinase activity and was only manifest when expressed in post-mitotic non-neuronal progenitors. Together, these data indicate that DmDyrk2 is expressed in developing sensory systems, that it is required for the development of the visual system, and that the eye is a good model to identify DmDyrk2 targets.
Neural Development | 2011
Mark Charlton-Perkins; S. Leigh Whitaker; Yueyang Fei; Baotong Xie; David Li-Kroeger; Brian Gebelein; Tiffany Cook
PLOS Genetics | 2017
Mark Charlton-Perkins; Edward Sendler; Elke K. Buschbeck; Tiffany Cook
Archive | 2014
Mark Charlton-Perkins
Current Topics in Developmental Biology | 2010
Mark Charlton-Perkins; Tiffany Cook