Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tiffany Cook is active.

Publication


Featured researches published by Tiffany Cook.


Genome Biology | 2003

Sp1- and Krüppel-like transcription factors

Joanna Kaczynski; Tiffany Cook; Raul Urrutia

SummarySp1-like proteins and Krüppel-like factors (KLFs) are highly related zinc-finger proteins that are important components of the eukaryotic cellular transcriptional machinery. By regulating the expression of a large number of genes that have GC-rich promoters, Sp1-like/KLF transcription regulators may take part in virtually all facets of cellular function, including cell proliferation, apoptosis, differentiation, and neoplastic transformation. Individual members of the Sp1-like/KLF family can function as activators or repressors depending on which promoter they bind and the coregulators with which they interact. A long-standing research aim has been to define the mechanisms by which Sp1-like factors and KLFs regulate gene expression and cellular function in a cell- and promoter-specific manner. Most members of this family have been identified in mammals, with at least 21 Sp1-like/KLF proteins encoded in the human genome, and members are also found in frogs, worms and flies. Sp1-like/KLF proteins have highly conserved carboxy-terminal zinc-finger domains that function in DNA binding. The amino terminus, containing the transcription activation domain, can vary significantly between family members.


Journal of Biological Chemistry | 1998

Molecular Cloning and Characterization of TIEG2Reveals a New Subfamily of Transforming Growth Factor-β-inducible Sp1-like Zinc Finger-encoding Genes Involved in the Regulation of Cell Growth

Tiffany Cook; Brian Gebelein; Kristin Mesa; Ann C. Mladek; Raul Urrutia

Sp1-like zinc finger transcription factors are involved in the regulation of cell growth and differentiation. Recent evidence demonstrating that mammalian cells express novel, yet uncharacterized, Sp1-like proteins has stimulated a search for new members of this family. We and others have recently reported that the transforming growth factor (TGF)-β-regulated gene TIEGencodes a new Sp1-like protein that inhibits cell growth in cultured cells. Here we report the identification, nuclear localization, DNA binding activity, transcriptional repression activity, and growth inhibitory effects of TIEG2, a novel TGF-β-inducible gene related to TIEG. TIEG2 is ubiquitously expressed in human tissues, with an enrichment in pancreas and muscle. TIEG2 shares 91% homology with TIEG1 within the zinc finger region and 44% homology within the N terminus. Biochemical characterization reveals that TIEG2 is a nuclear protein, which, as predicted from the primary structure, specifically binds to an Sp1-like DNA sequence in vitroand can repress a promoter containing Sp1-like binding sites in transfected Chinese hamster ovary epithelial cells. Furthermore, functional studies using [3H]thymidine uptake and MTS (3-(4,3-dimethyltiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assays demonstrate that the overexpression of TIEG2 in Chinese hamster ovary cells inhibits cell proliferation. Thus, TIEG2, together with TIEG1, defines a new subfamily of TGF-β-inducible Sp1-like proteins involved in the regulation of cell growth.


Annals of the New York Academy of Sciences | 1999

Sp1 and its likes: biochemical and functional predictions for a growing family of zinc finger transcription factors.

Tiffany Cook; Brian Gebelein; Raul Urrutia

Abstract: The discovery and functional characterization of Sp1 as a GC‐rich binding zinc finger protein provided a useful paradigm for understanding mechanisms mediating transcriptional activation in eukaryotic cells. This early paradigm suggested that promoters carrying GC‐rich sequences are activated by Sp1 through its interaction with proteins from the basal transcriptional machinery to upregulate gene expression. Since the time of this seminal work, studies from several laboratories have led to the discovery of many Sp1‐like transcription factors containing highly homologous DNA binding motifs that bind to similar sequences. Consequently, this knowledge poses many important questions regarding whether these related proteins have similar or antagonistic biochemical and functional properties to Sp1. The goal of this article is to use available database information and recent experimental evidence to describe the current repertoire of Sp1‐like zinc finger transcription factors in mammalian cells. Furthermore, we discuss structural and functional studies that reveal that these proteins may share a role in morphogenetic pathways. Altogether, this information is aimed at better understanding how this growing family of transcription factors work to regulate gene expression and morphogenesis.


Developmental Cell | 2003

Distinction between Color Photoreceptor Cell Fates Is Controlled by Prospero in Drosophila

Tiffany Cook; Franck Pichaud; Remi Sonneville; Dmitri Papatsenko; Claude Desplan

The Drosophila compound eye consists of approximately 750 independently functioning ommatidia, each containing two photoreceptor subpopulations. The outer photoreceptors participate in motion detection, while the inner photoreceptors contribute to color vision. Although the inner photoreceptors, R7 and R8, terminally differentiate into functionally related cells, they differ in their molecular and morphological makeup. Our data indicates that several aspects of R7 versus R8 cell fate determination are regulated by the transcription factor Prospero (Pros). pros is specifically expressed in R7 cells, and R7 cells mutant for pros derepress R8 rhodopsins, lose R7 rhodopsins and acquire an R8-like morphology. This suggests that R7 inner photoreceptor cell fate is acquired from a default R8-like fate that is regulated, in part, via the direct transcriptional repression of R8 rhodopsins in R7 cells. Furthermore, this study provides transcriptional targets for pros that may lend insight into its role in regulating neuronal development in flies and vertebrates.


Nature Genetics | 2012

Alterations of the CIB2 calcium- and integrin-binding protein cause Usher syndrome type 1J and nonsyndromic deafness DFNB48

Saima Riazuddin; Inna A. Belyantseva; Arnaud P. Giese; Kwanghyuk Lee; Artur A. Indzhykulian; Sri Pratima Nandamuri; Rizwan Yousaf; Ghanshyam P. Sinha; Sue Lee; David Terrell; Rashmi S. Hegde; Saima Anwar; Paula B. Andrade-Elizondo; Asli Sirmaci; Leslie V. Parise; Sulman Basit; Abdul Wali; Muhammad Ayub; Muhammad Ansar; Wasim Ahmad; Shaheen N. Khan; Javed Akram; Mustafa Tekin; Sheikh Riazuddin; Tiffany Cook; Elke K. Buschbeck; Gregory I. Frolenkov; Suzanne M. Leal; Thomas B. Friedman; Zubair M. Ahmed

Sensorineural hearing loss is genetically heterogeneous. Here, we report that mutations in CIB2, which encodes a calcium- and integrin-binding protein, are associated with nonsyndromic deafness (DFNB48) and Usher syndrome type 1J (USH1J). One mutation in CIB2 is a prevalent cause of deafness DFNB48 in Pakistan; other CIB2 mutations contribute to deafness elsewhere in the world. In mice, CIB2 is localized to the mechanosensory stereocilia of inner ear hair cells and to retinal photoreceptor and pigmented epithelium cells. Consistent with molecular modeling predictions of calcium binding, CIB2 significantly decreased the ATP-induced calcium responses in heterologous cells, whereas mutations in deafness DFNB48 altered CIB2 effects on calcium responses. Furthermore, in zebrafish and Drosophila melanogaster, CIB2 is essential for the function and proper development of hair cells and retinal photoreceptor cells. We also show that CIB2 is a new member of the vertebrate Usher interactome.


Journal of Biological Chemistry | 1999

Three Conserved Transcriptional Repressor Domains Are a Defining Feature of the TIEG Subfamily of Sp1-like Zinc Finger Proteins

Tiffany Cook; Brian Gebelein; Mohammad Belal; Kristin Mesa; Raul Urrutia

Sp1-like transcription factors are characterized by three highly homologous C-terminal zinc finger motifs that bind GC-rich sequences. These proteins behave as either activators or repressors and have begun to be classified into different subfamilies based upon the presence of conserved motifs outside the zinc finger domain. This classification predicts that different Sp1-like subfamilies share certain functional properties. TIEG1 and TIEG2 constitute a new subfamily of transforming growth factor-β-inducible Sp1-like proteins whose zinc finger motifs also bind GC-rich sequences. However, regions outside of the DNA-binding domain that differ in structure from other Sp1-like family members remain poorly characterized. Here, we have used extensive mutagenesis and GAL4-based transcriptional assays to identify three repression domains within TIEG1 and TIEG2 that we call R1, R2, and R3. R1 is 10 amino acids, R2 is 12 amino acids, and R3 is approximately 80 amino acids long. None of these domains share homology with previously described transcriptional regulatory motifs, but they share strong sequence homology and are functionally conserved between TIEG1 and TIEG2. Together, these data demonstrate that TIEG proteins are capable of repressing transcription, define domains critical for this function, and further support the idea that different subfamilies of Sp1-like proteins have evolved to mediate distinct transcriptional functions.


Developmental Cell | 2003

Otd/Crx, a Dual Regulator for the Specification of Ommatidia Subtypes in the Drosophila Retina

Ali Tahayato; Remi Sonneville; Franck Pichaud; Mathias F. Wernet; Dmitri Papatsenko; Philippe Beaufils; Tiffany Cook; Claude Desplan

Comparison between the inputs of photoreceptors with different spectral sensitivities is required for color vision. In Drosophila, this is achieved in each ommatidium by the inner photoreceptors R7 and R8. Two classes of ommatidia are distributed stochastically in the retina: 30% contain UV-Rh3 in R7 and blue-Rh5 in R8, while the remaining 70% contain UV-Rh4 in R7 and green-Rh6 in R8. We show here that the distinction between the rhodopsins expressed in the two classes of ommatidia depends on a series of highly conserved homeodomain binding sites present in the rhodopsin promoters. The homeoprotein Orthodenticle acts through these sites to activate rh3 and rh5 in their specific ommatidial subclass and through the same sites to prevent rh6 expression in outer photoreceptors. Therefore, Otd is a key player in the terminal differentiation of subtypes of photoreceptors by regulating rhodopsin expression, a function reminiscent of the role of one of its mammalian homologs, Crx, in eye development.


PLOS Biology | 2008

Iroquois complex genes induce co-expression of rhodopsins in Drosophila.

Esteban O. Mazzoni; Arzu Celik; Mathias F. Wernet; Daniel Vasiliauskas; Robert J. Johnston; Tiffany Cook; Franck Pichaud; Claude Desplan

The Drosophila eye is a mosaic that results from the stochastic distribution of two ommatidial subtypes. Pale and yellow ommatidia can be distinguished by the expression of distinct rhodopsins and other pigments in their inner photoreceptors (R7 and R8), which are implicated in color vision. The pale subtype contains ultraviolet (UV)-absorbing Rh3 in R7 and blue-absorbing Rh5 in R8. The yellow subtype contains UV-absorbing Rh4 in R7 and green-absorbing Rh6 in R8. The exclusive expression of one rhodopsin per photoreceptor is a widespread phenomenon, although exceptions exist. The mechanisms leading to the exclusive expression or to co-expression of sensory receptors are currently not known. We describe a new class of ommatidia that co-express rh3 and rh4 in R7, but maintain normal exclusion between rh5 and rh6 in R8. These ommatidia, which are localized in the dorsal eye, result from the expansion of rh3 into the yellow-R7 subtype. Genes from the Iroquois Complex (Iro-C) are necessary and sufficient to induce co-expression in yR7. Iro-C genes allow photoreceptors to break the “one receptor–one neuron” rule, leading to a novel subtype of broad-spectrum UV- and green-sensitive ommatidia.


Journal of Neurochemistry | 2002

Three Dynamin-Encoding Genes Are Differentially Expressed in Developing Rat Brain

Tiffany Cook; Kristin Mesa; Raul Urrutia

Abstract: Dynamin proteins are members of a recently described family of GTPases involved in receptor‐mediated processes. To date, three different dynamin‐encoding genes have been identified in mammalian tissues. Dynamin I is expressed only in neurons, whereas dynamin II is ubiquitously expressed. A third isoform, dynamin III, was originally isolated from a rat testis cDNA library and shown to be testis‐specific. However, here we report the cloning and characterization of dynamin III from brain and lung, demonstrating a more extended pattern of expression for this isoform. In addition, we have investigated the temporal pattern of expression of these three genes during brain development. We find that both dynamin I and dynamin III mRNA levels are up‐regulated during embryogenesis, whereas dynamin II mRNA levels remain unchanged. From these results, we conclude that dynamin III is not a testis‐specific isoform and, furthermore, that rat brain expresses three different dynamin‐encoding genes that are differentially regulated during development. Therefore, this large isoform diversity of dynamin proteins in brain predicts a significant complexity in the understanding of dynamin‐based processes in this tissue.


Development | 2007

Senseless functions as a molecular switch for color photoreceptor differentiation in Drosophila

Baotong Xie; Mark Charlton-Perkins; Elizabeth C. McDonald; Brian Gebelein; Tiffany Cook

A major question in development is how different specialized cell types arise from a common progenitor. In the adult Drosophila compound eye, color discrimination is achieved by UV-, blue- and green-sensitive photoreceptors (PRs). These different PR subsets arise from neuronal precursors called R7 and R8 cells. Recent studies have demonstrated that R7-based UV-sensitive PRs require the repression of R8-based blue/green-sensitive PR characteristics to properly develop. This repression is mediated by the transcription factor Prospero (Pros). Here, we report that Senseless (Sens), a Drosophila ortholog of the vertebrate Gfi1 transcription factor, plays an opposing role to Pros by both negatively regulating R7-based features and positively enforcing R8-based features during terminal differentiation. In addition, we demonstrate that Pros and Sens function together with the transcription factor Orthodenticle (Otd) to oppositely regulate R7 and R8 PR Rhodopsin gene expression in vitro. These data show that sens, previously shown to be essential for neuronal specification, also controls differentiation of specific neuronal subtypes in the retina. Interestingly, Pros has recently been shown to function as a tumor suppressor, whereas Gfi1 is a well-characterized oncogene. Thus, we propose that sens/pros antagonism is important for regulating many biological processes.

Collaboration


Dive into the Tiffany Cook's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark Charlton-Perkins

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Baotong Xie

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Elizabeth C. McDonald

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Terrell

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew C. Zelhof

Indiana University Bloomington

View shared research outputs
Researchain Logo
Decentralizing Knowledge